
VLSI (VERY LARGE SC..(U) AIR FORCE 181ST OF TECH
MIGIOT-PATTERSWI AFO ON SCHOOL. OF ENOGI S A MAOST

UNLSIIDDEC 89 AFIT/GCE/EM/6'90-9 F/G 9/~1

EhmohhmhhhhlmmEJEChERhh

4 c 11

IN

4 DTIC

I
A CIRCUIT EXTRACTION SYSTEM

AND GRAPHICAL DISPLAY

FOR VLSI DESIGN
THESIS

Stuart A. Yarost
Captain, USAF

AFIT/GCE/ENG/8 9 D-9

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

A-pv.W far . ub,. MWC.. 89 j2 18 0 86I______ n~mt~

AFIT/GCE/ENG/89D-9

A CIRCUIT EXTRACTION SYSTEM AND GRAPHICAL DISPLAY

FOR VLSI DESIGN

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Stuart A. Yarost, B.S.

Captain, USAF

December 1989

Approved for public release; distribution unlimited

Acknowledgments

I would like to express my appreciation to my wife,

Debbie, for her love and patience while I spent all my time

communing with my computer.

I wish to thank Doctor Frank Brown for his guidance,

encouragement and help when this thesis looked like a never

ending project, as well as Maj Joe Degroat for his enthusiasm

and ideas. I also would like thank CPT Bob hammell for his

correction of my drafts, as well as LTC Charles Bisbee and

Capt Bruce George for their encouragement. I have a special

thanks for Ton; Schooler, whose help with the graphics on the

Sun 3/50s allowed me to complete my thesis.

Acoession For

DTIC TAB
SUnlliu o'inced E
Ju_;t It joat Lon

BY
Dioltr bution/

Avn-i]adIlitv Co09

Dit Ar Li e: /crDiii ,eo

Table of Contents

Acknowledgements.. i

List of Figures.................................... v

Abstract.. vi

I. Introduction...................................... 1

Background.. 1
Problem... 5
Summary of Current Knowlpdnr..............7
Scope... 8
Approach... 10
Sequence of Presentation........................ 11

Ii. Circuit Extraction............................... 13

Introduction..................................... 13
Goal.. 13
Obtaining a Net-List............................. 15
Ccnverting the Net-List to
CLIPS Symbolic Form.............................. 17
Extracting Higher-order Components.............. 18
Forward-Chaini-ig vs. Backward-Chaining 23
Problems... 25
Results... 30

III. Graphical Display................................ 32

Introduction..................................... 32
Tasks.......................................32
Finding Relative Location of Components 33
Finding -imits of the Components............ 34
Parsing th, CLIPS file........................ 3
Initializing a Viewing Surface.................. 36
Drawing the Component Symbols................... 37
Problems.. 40
Results... 44

IV. Clock Generator Circuit Example.................4 5

Introduction..................................... 45
Extraction....................................... 47
Display.. 48
Summary... 51

iii

V. Conclusions and Recommendations................. 55

Introduction..................................... 55
Conclusions................................... 9
Recommendations.................................. 57
Summary... 60

Appendix A: Extraction Code............................. 62

Appendix B: G~raphical Display Code..................... 81

Appendix C: Test Code and Circuit Example File ... 99

Appendix D: User's Manual.............................. ill

Bibliography... 114

Vita.. 115

iv

List of Figures

1. AFIT CAD cycle with Graphical Display 4

2. Graphical Display Sequence of Events 9

3. Net-List used by Esim 16

4. CLIPS Symbolic Form 18

5. Logic Coiponents 20

6. Legal Component Names 21

7. CLIPS Code to Extract Inverter 2?

8. CLIPS Code to Add ID or Delete Transistor 29

9. CLIPS Code to Extract Inverter and Find New
x ai d y Cooidinates 34

10. Circuit File sith Extrema 36

11. Size Level of Implemented Symbols 38

12. Symbols Implemented by the Display 39

13. Function to Draw a Buffer 41

14. Circuit Diagram of Clock Generator 46

15. Extracted Clock Generator Circuit 48

16. Batch file to Open Window 49

17. Display of Whole Circuit 50

18. Close-Up Display of Circuit 52

19. Display Input Session 54

v

AFIT/GCE/ENG/89D-9

Abstract

This thesis proposes a system for higher-order logic

uxtraction of components from a net-list of transistois and

the graphical display of the extracted components. Critical

sections have been implemented to demonstrate the feasibility

of the system. These sections include a prototype expert

system written in CLIPS and a graphical display capable of

displaying extracted components on a Sun worksLation.

Extraction techniques which were developed in this

effort use pattern watching and multiple passes. Graphical

techniques used in the display include simple line drawing and

translation of images.

This research has the potential to provide savings of

time and effort to engineers designing new circuits or

reverse-engineering older circuits for which no adequate

specifications exist. This system will also help to close the

design cycle and allow the designer to assure that what he has

physically designed is what he logically designed.

vi

A CIRCUIT EXTRACTION SYSTEM AND

GRAPHICAL DISPLAY FOR VLSI DESIGN

I. Introduction

Background

The design of a very large scale integrated (VLSI)

circuit can take man-years, and can cost millions of doliars.

Engineers are searching for ways to reduce the amount of time

and the amount of money needed to design such circuits.

Computer Aided Design (CAD) tools reduce the time needed.

Another task that takes many man-hours is the redesign

of existing VLSI circuits whose original documentation is

either missing or inaccurate. Reverse-engineering is the

taking apart of an existing circuit to find how it is put

together. This task is much harder than the original design

of a circuit.

The tasks of designing a circuit and reverse-engineering

a circuit have many common problems. In both cases,

extracting the logic of the circuit from the silicon layout

and being able to display the logic of the circuit would help

facilitate the process. Finding ways to make these tasks

easier is a current area of research at many institutes of

higher learning, and in many companies.

• • m m |1

The CAD cycle starts with the design of a circuit, and

finishes with the production of the circuit. The closing of

this cycle, to verify that a circuit is what it was designed

to be, is called verification. At the Air Force Institute of

Technology (AFIT), a number of theses have been written in the

last few years dealing with the CAD cycle and the reverse

engineering of circuits. CPT Erik Fretheim, USA, did research

on the reverse engineering of VLSI circuits using pattern

recognition techniques to identify the different components

on a silicon chip (1:1-103). CPT Mike Dukes, USA, used the

PROLOG language to extract the circuit logic of a chip

(2:1-154). Both suggested further research.

The CAD cycle at AFIT needs a number of additional tools

to add to the capabilities of those doing circuit design. The

same tools can aid the reverse engineering of existing VLSI

circuits. This thesis documents the production of such a

tool, a graphical display which shows the logic of a circuit

using standard logic and gate symbols. This tool uses the

coordinates from MAGIC to locate the components in the

display. and to locate the part of the circuit to view. The

current CAD cycle at AFIT includes the design ot circuits in

the VHSIC Hardware Description Language (VIIDL), their layout

using MAGIC and their simulation at the logic-gate level using

ESIM.

VHDL is used to completely specify a circuit, and to

2

simulate it to confirm that the circuit designed is what is

needed. VHDL simulations of a circuit can include simulations

from the perspective of timing, logic, connections, and

components. Once the circuit has been designed, that dcsign

must be converted to components on a silicon chip. MAGIC is

the CAD tool used to lay out the physical struicture of the

circuit. CIF can be used to convert the MAGIC file to "cif"

(Caltech Intermediate Format), which details the actual

physical structure of the chip. ESIM is used to simulate the

logic operation of the circuit that has been laid out using

MAGIC.

The VHDL circuit description must be converted to MAGIC

manually. A MAGIC file is converted to "cif" format by the

program CIF called from within MAGIC. TI-e "ci:'; file can be

converted to an ESIM "sim" file using the program MEXTRA. The

normal flow is VHDL to MAGIC to CIF to ESIM to MAGIC until the

circuit performs correctly. Figure 1 displays the current CAD

cycle at AFIT, with the addition of the graphical display

produced for this thesis completing the cycle back to the

original logic design.

VHDL does not check a physical layout of 4 circuit, only

the interconnections and logic structure. Since VHDL is used

to simulate an actual circuit design, the tdsk is to insure

that the MAGIC circuit duplicates the interccnnections that

were simulated in VHDL. This problem, as well as the problem

3

LoqK

Figure 1. AFIT CAD cycle with Graphical Display

4

of displaying the logic of an unknown circuit, are problems

that need solutions.

Problem

This thesis was undertaken to help solve some specific

problems. The overall task was to add some quick, visual

feedback to the AFIT design cycle. A graphical display helps

the engineer to check if the design of the circuit he laid out

has the correct logic- This disply is what has been built.

It also helps determine the function of an unidentified

circuit, as well as that of a circuit for which no

documentation exists. A graphical display is a method to

display and manipulate information in a graphical manner, as

contrasted with a tabular manner. Instead of lisLitig the

components and their gates, a graphical display will show a

pictorial representation of each component and its respective

gates using standard logic and electrical engineering symbols.

A visual representation in this manner is typically easier to

understand than a tabular listing of components.

A graphical display was built, using a symbolic form for

data storage. The symbolic form was used to allow the

manipulation of the net-list by the symbolic language. A

symbolic form is a form that a symbolic language, such as

1ROLOG, can understand. Each symbolic language has its own

requirements that need to be satisfied by a symbolic form that

5

t can read.

To create the graphical display, an expert system was

written to determine the logic of a circuit from a list of

component transistors of a circuit (net-list) . This expert

system was built direct'y on the work of CPT Mike Dukes, USA

(2:1-154). The major difference between the extraction

routines CPT Dukes created and the one use'd for the front-end

of the graphical display is the symbolic language used. CPT

Dukes used PROLOG, a backward-chaining language, while the

expert system for the grdphical display was written in CLIPS

("C" Language Integrated Production System), a

forward-chaining rule-based language. Exten:sions to CPT

Duke's work include the addition of position information and

scaling information.

After the expert system was written, a graphical display

was written using the Sun Core graphics commands on a Sin 3

workstation. The language that was used to rcad the symbolic

files produced by the expert system, and to drive the graphics

routines, was C.

This thesis provides a two-part solution for the

aforementioned problems. First, the higher-order logic

components are extracted using the forward-chaining expert

system. Then the output of the expert system is used to

create a graphical representation of the extracted components,

in positions related to their positions on the circuit. The

6

solution to the second part of the problem relied on the

completion of the solution to the first part.

Summary of Current Knowledge

At present, the representation of a circuit in symbolic

form has been achieved by CPT Dukes (2:33-99). The symbolic

language he used was PROLOG, a backward-chaining AI

(Artificial Intelligence) language. Using PROLOG, he was able

to start with a list of trarsistors and finish with a list of

higher-order components and logic gates.

CPT Dukes started with a MAGIC "cif" file of a circuit.

He then used the program MEXTRA to obtain a "sim" file. In

this conversion, all the hierarchical information that is

present in the original "cif" file is lost. After running a

LEX program "upper" to convert all letters to uppercase, he

converted the file to a format that PROLOG could load using

"sim2pro", a program he wrote in C. He used a PROLOG program

called TRANS to extract a higher order logic-gate description

of his circuit. The higher-order logic description is in

tabular form.

CPT Dukes used the file created by TRANS to verify that

the circuit laid out was the circuit designed in VHDL. He is

using this technique in further research into formal

verification.

I have found no specific reference in the literature on

7

converting a symbolic representation of a circuit to a

graphical representation. Although there is a plethora of

information on how to do graphics and routing, that

information has to be integrated to achieve the desired

results.

Scope

The scope of this project was to provide an expert system

program which extracts a higher-order logic representation

from a net-list, and a graphical display capable of displaying

that representation on a graphics device. The graphical

representation shows the circuit by using files produced by

the expert system. The display allows choice of level of

representation to be viewed (hierarchy), and area of circuit

displayed (zooming).

The first part of Figure 2 contains a sample file that

has already been parsed to the form that CLIPS can read using

a program written for the thesis, "sim2clip". Tne file

contains only n and p type transistors. The second part of

Figure 2 shows a file of the components that have been

extracted from the first file. These components are a higher

order representation of the circuit composed of the

transistors in the first part of figure 2. The last part

shows what the graphical display would look like for that

circuit, using the higher level components.

8

(p 128 OZ pql vdd 300 21596.3 -26700 -24000)
(n 450 449 520 300 450 3300 -1350)
(n 498 520 gnd 300 450 2700 -1350)
(n 453 gnd 329 1200 450 25500 -2250)
(n 447 329 gnd 1200 450 23550 -2250)
(n 584 gnd 533 300 13497.8 -5550 9000)
(p 447 584 vdd 300 6748.75 6150 4200)
(p 584 vdd 533 300 13647.8 -5550 4050)
(p 453 329 589 1200 900 24750 1200)
(p 447 589 vdd 1200 900 23250 1200)
(p 498 449 vdd 300 900 2700 900)
(p 450 vdd 449 300 900 3900 900)
(n 447 gnd 584 300 3299.75 6150 10050)
(n 128 gnd OZpql 300 17996.8 -29700 14400)

CLIPS file of unextracted transistors
EXTRACTS TO

(buffer 447 533 300 6825)
(inv 128 OZpql -28200 -4800)
(nand2 genl5 498 450 449 3150 -225)
(nor2 genl6 447 453 329 24262.5 -525)

Extracted Components
VISUALIZED AS

498 4 4*
4-- 5 0450

447 ...

Graphical display

Figure 2. Graphical Display Sequence of Events

9

Approach

The graphical display breaks down into four distinct

areas: representing the circuit data symbolically, extracting

the higher order logic components, locatiiig their correct

relative location on the display, and actually drawing the

image on the screen.

PROLOG is not the ideal choice to represent the circuit

components, nor to manipulate them to obtain the higher order

ligic components. A forward-chaining AI language can

manipulate the symbolic representation with less programming,

and is easier to understand and maintain. CPT Dukes's code

was, therefore, converted from PROLOG into CLIPS (a

forward-chainer), adding the ability to pass along position

information. His C program "sim2pro" was altered to parse the

"sim" file into a symbolic form that CLIPS needs at the

outset (2:28-30).

Locating the correct relative positions for the extracted

gates required the use of a simple mathematical routine. The

routine averages separately all the x and y locations of the

component gates or transistors. The new x and y is the

location of the new gate. This is done using CLIPS, allowing

different scaling factors to be used, to allow presentation

on different graphics devices.

The coding to produce the graphics took relatively little

time once the graphics device and graphics programs were

10

determined. Depending on the capabilities needed, the Sun

3/50 and Sun 3/60 workstations have three different graphics

packages available. The choices are Pixwinn, Sun CGI, and Sun

Core. All three packages were able to support the graphical

display. Sun Core is the most limited in interfacing with

Sunwindows, but is also the easiest to understand and to use

for drawing. The built-in graphics on the Sun workstations

were able to handle the graphical display, when Sun Core

graphics were used.

Sequence of Presentation

Chapter 1 has provided some background on the AFIT CAD

environment, and the need for a graphical display. The

problem was explained, as well as the scope of the problem and

solution. An approach to the problem was summarized.

Chapter 2 is an explanation on how the extraction process

works. The goal is explained, as well as the procedure. The

relative merits of forward and backward-chaining are also

discussed. The problemis that occurred are explained, as well

as the results.

Chapter 3 is a discussion of the graphical display

portion of the thesis. First is an explanation of the goal.

Next, the procedures followed to achieve that goal are

outlined. Problems encountered are then discussed, followed

by a summary of results.

11

Chapter 4 details the extraction and display of an

example circuit, a clock generator chip. The quality of the

extraction and display are discussed.

Chapter 5 presents overall conclusions and

recommendations. Included are possible improvements to the

extraction program and to the program that displays the

graphical display.

Appendix A contains all the extraction code, as well as

other code needed to facilitate the extraction.

Appendix B contains all the code pertaining to the

graphical display.

Appendix C contains all the test code as .:-ll as the

"sim" file and CLIPS file of the clock generator circuit used

as an example in chapter IV.

Appendix D is a user's manual for the extraction

routines, and the graphical display.

12

II. Circuit Extraction

Introduction

This chapter discusses the first part of the process of

creating a graphical display. It covers how the extraction

of higher-o-der components from lower-order components was

achieved. The sections of the chapter are the goals aimed

for, procedures for obtaining a suitable file to start with,

converting that file to a usable form, and the extraction

process. This chapter also covers the difference between

forward-chaining and back-chaining, problems encountered while

creating the extraction routines, and the results of the

extraction portion of this effort. A users guide on how to

do the extraction process is included as part of appendix D.

Goal

The creation of a graphical display to help the reverse

engineering of VLSI circuits can be divided logically into two

parts: (a) representing a circuit symbolically and extracting

the higher-order logic gates from the circuit, and (b)

displaying the symbolic information on a graphics-capable

device. This separation allows completion of either part

independently, since neither part is dependent on the other

part except for the data interface. The only knowledge needed

by both parts is the exact format of the file that is the

13

product of the extraction process, and that is read by the

program that creates the graphical display.

For purposes ef this thesis, representing a circuit

symbolically is the conversion of the information that

describes the circuit into a form that a symbolic language

(such as PROLOG or CLIPS) can use. This symbolic form of the

list of transistors (net-list) can then be manipulated by the

symbolic language.

Extraction is the process of replacing several components

of a given level nf complexity with a single higher-order

component that performs the same logical function. This

higher-order representation is easier for the engineer to

understand.

Representing a circuit in a ,ymbolic form and extracting

the higher-order logic gates was the first part of the

research completed. A file containing higher-order logic

constructs, derived from a list of N and P type transistors

was produced. The problem divided into three smaller tasks.

The first task was to obtain a net-list of the

transistors in a circuit in a form that could be understood

by an engineer; the second task was translating that list into

a form that CLIPS could understand; and the third task was

using CLIPS to extract the higher-order logic constructs from

the net-list, leaving a file of the components for further

processing, extraction, or display.

14

Obtaining a Net-List

As stated earlier, the first task in the process of

extracting higher-order components from lower-order ones is

to get a net-list of the transistors. Obtaining a suitable

net-list is not a difficult task. MAGIC can produce a file

of a layout in "cif" format. This "cif" file does not have

the circuit information in a form that is understandable as

a net-list. The file contains information on the different

physical layers of a polysilicon chip, not how these layers

combine to form transistors, capacitors and other components.

The "cit" description is carried out in a hierarchical

manner: when a section of a circuit, a cell, is described

only once, then the cell name is repeated wherever else that

cell exists in the circuit without repeating the information

contained in the original cell description. Cells can be

recursively described, using cells within cells.

Hierarchical information reduces the amount of information

needed to completely describe a circuit

The "cif" file, run through MEXTRA, is converted to a

form that contains a readable net-list. This form is the one

that the simulation program ESIM can use to run a simulation

of the operation of a circuit. MEXTRA translates the

information on the physical layout of the circuit into a list

of transistors, resistors, capacitors and other types of

components. It also contains the size, location, and

15

interconnections between the components. All hierarchical

information has been lost, however. The information on the

sizes and locations of the components, and interconnections

between the components, is what is needed to do the circuit

extraction, but it is in a format CLIPS cannot read. Figure 3

shows a sample of the file that is produced by MEXTRA.

TYPE NODES WIDTHS COORDINATES
p 128 OZpql Vdd 300 21596.3 -26700 -24000
p 53 OZpq2 Vdd 300 21596.3 73200 -29400
p 277 Vdd 233 300 13647.8 24450 -9900
p 329 277 Vdd 300 6748.75 18600 -114%JO
p 53 Vdd OZpq2 300 21596.3 53100 -17850
p 233 53 Vdd 300 21596.3 39000 -17100
p 277 Vdd 233 300 13647.8 24450 -12750
e 450 449 520 300 450 3300 -1350
e 498 520 GND 300 450 2700 -1350
e IZ go GND 498 300 450 1500 -1350
e 424 453 GND 300 450 27600 -1650
e 453 GND 329 1200 450 25500 -2250

Figure 3. Net-List used by ESIM.

The first field indicates what type of component is

listed in that line. A "p" indicates a p-type transistor

while an "e" indicates an n-type transistor. The only

components used for extraction are n and p type trdfnsistors.

Symbols for other types of components (such as resistors or

capacitors) can also appear, but are igrorel for the purpose

of extraction. The next three fields are the node names of

gate, source, and drain of the transistor. A node name can

be any alphanumeric string. Node names are assigned by MAGIC

16

if not explicitly given by the designer using MAGIC. The next

two fields are the x width and y width of the transistor.

They are not used in the extraction process. The last two

fields are the x and y coordinates of the transistor,

respectively. The widths and the coordinates must all be real.

numbers.

Using the first line of Figure 3 as an example, the

fields have the following meaning. "p" indicates a p type

transistor. "128", "OZpql" and "Vdd" are the gate, drain and

source, respectively. "300" and "21596.3" are the x and y

widths, which are not used in extraction, and "--16700" and I-

24000" are the x and y coordinates.

Converting the Net-List to CLIPS Symbolic Form

The next task, getting the file in a form readable by

CLIPS, was accomplished by using a parsing program, "sim2clip"

(see appendix A), written in C. It was converted from the

program "sim2pro", written by CPT Mike Dukes (2:127-131), and

altered to parse to CLIPS symbolic form instead of PROLOG

symbolic form. This CLIPS form can be read by CLIPS using the

load-Cacts predicate of the CLIPS language. Figure 4 shows

the file of Figure 3 after its conversion by "sim2clip".

The fields of thc symbolic file produced by "sim2clip"

correspond one-to-one with the fields of the file produced by

MEXTRA.

17

(p 128 OZ pql vdd 300 21596.3 -26700 -24000)
(p 53 OZpq2 vdd 300 21596.3 73200 -29400)
(p 277 vdd 233 300 13647.8 24450 -9900)
(p 329 277 vdd 300 6748.75 18600 -11400)
(p 53 vdd OZpq2 300 21596.3 53100 -17850)
(p 233 53 vdd 300 21596.3 39000 -17100)
(p 277 vdd 233 300 13647.8 24450 -12750)
(n 450 449 520 300 450 3300 -1350)
(n 498 520 gnd 300 450 2700 -1350)
(n IZgo gnd 498 300 450 1500 -1350)
(n 424 453 qnd 300 450 27600 -1650)
(n 453 gnd 329 1200 450 25500 -2250)

Figure 4. CLIPS Symbolic Form

Legal values for the fields are the same, with one

exception: "p" and "n" are the only legal values for the

first field. "p"'s pass unchanged, "e"'s are changed to

"n"'s, and any lines that begin with any other symbol are

removed. The only changes are the addition of the parenthesis

at the beginning and end of each line, and the substitution

of a "n" for dny "e" in the first field, which indicates the

type of component. The only changes necessary to allow CLIPS

to read the file using the "load-facts" predicate (3:59) is

the addition of the parentheses at the beginning and end of

each line. The removal of any line not representing a

transistor is for ease of extraction.

Extracting Higher-order Components

Extracting the higher-order logic components can begin

once the net-list is in a usable form. The algorithm used is

18

relatively straightforward. First the file produced by

"simr2clip", containing all the transistors, is loaded into

memory. Then groups of components that can be combined to

form higher-order components are found, pattern-matching the

transistors to form higher-order logic components. The facts

denoting the used transistors are retracted, while the newly

extracted gates are written to a new file.

The name of this new file is of the form "outcompX.clp",

where "X" is the extraction level. The components that remain

at the end of the extraction are put in a file similarly

called "compremX.clp", where IX" has the same meaning.

The file to which the newly extracted components are

written can be used later in the same manner, to form even

higher-order logic components. Each iteration of this process

reduces the size of the database of components used for

extraction. As each new component is extracted, fewer

components are left to pattern-match against, reducing the

memory and time required to do each succeeding match.

Figure 5 shows a portion of a file of extracted

components. The first field identifies the component-type.

The last two fields are x and y coordinates, respectively.

The rest of the fields are node names, except when a unique

identifier ("genxx", where xx is a number) is added as the

second field. The use of a unique identific- is explained

later.

19

(inv 53 OZ pq2 74850 -4425)
(inv 233 53 41325 -11325)
(inv 277 233 24375 -8775)
(nand2 gen44 498 450 449 3150 -225)
(inv IZ go 498 1500 -225)
(inv 424 453 27450 0)
(nor2 gen45 447 453 329 24262.5 -525)
(nor2 gen46 329 424 447 20475 -675)
(inv 450 424 17025 -675)
(inv 449 443 5175 -900)
(inv 177 444 10575 -1050)
(inv 444 450 14925 -1050)
(inv 443 177 7275 -1050)
(inv 128 OZpql -28350 -4200)
(inv 584 533 -5550 5100)
(inv 447 584 6150 7125)
(inv 533 128 -12825 5025)

Figure 5. Logic Components.

The fields have the following meaning in the first line

of figure 5: "inv" stands for inverter, "53" and "OZpq2" are

the input and output of the inverter, and "74850" and "-4425"

are the x and y coordinates. The legal values for the node

names and the x and y coordinates are the same as in the

previous files. The legal values for the first field, the

component names, and their corresponding values, are listed

in figure 6.

As mentioned previously, the exception to what the fields

represent is if the second field starts with "gen". In that

instance, the second field is a unique identifier used for the

extraction process. All components that have any

interchangeable inputs or outputs need this identifier. This

unique identifier is added to a component listing during the

20

ntrans n-diffusion transistor
ptrans p-diffusion transistor
inv inverter
tgate t-gate
nand2 2 input NAND-gate
nor2 2 input NOR-gate
clk inv clocked inverter
buffer buffer
mux multiplexor
xnor exclusive NOR gate
xor exclusive OR gate
dff D flip-flop

Figure 6. Legal Component Names

extraction process.

The reason the unique identifier is needed is the lack

of a back-tracking facility in CLIPS, and the need to be able

to bind a component to a variable to be able to retract it.

Without back-tracking, each permutation of the order of the

interchangeable gates must be checked explicitly. For the

example of a NAND-gate with 3 inputs, A, B and C, the

component needs to be checked for matching for further

extraction with the input gates in 6 different orders: ABC,

ACB, BAC, BCA, CAB and CBA.

The unique identifier allows CLIPS to try to

pattern-match a component with interchangeable gates with the

gates in all possible permutations. In all cases, the

component will have the same unique identifier. Figure 7

shows the CLIPS code to extract an inverter, and the need for

a unique identifier.

21

Figure 7 shows how, for the extraction of an inverter

from n and p type transistors, each transistor had to be

checked with its source and drain interchanged. The unique

ID allows the transistor-fact to be retracted, no matter which

configuration of source and drain is correct.

(defrule inverter
(or (ptrans ?idl ?gate vdd ?a ?xl ?yl)

(ptrans ?idl ?gate ?a vdd ?xl ?yl))
(or (ntrans ?id2 ?gate gnd ?a ?x2 ?y2)

(ntrans ?id2 ?gate ?a gnd ?x2 ?y2))
?p <- (ptrans ?idl $?)
?n <- (ntrans ?id2 $?)

(bind ?xa (+ ?xl ?x2) 2))
(bind ?ya (/ (+ ?yl ?y2) 2))
(retract ?p ?n)
(fprintout component

"(inv "?gate" "?a" "?xa" "?ya")"crlf))

Figure 7. CLIPS Code to Extract Inverter.

The reduction of the fact base by retracting the

components used to build extracted higher-order components

allows parallelization of the problem. Different portions of

the circuit can be run through the extraction process

separately, then the remaining lower-order components not

already used in an extraction can be combined to catch any

remaining higher-order components that were not extracted

before.

The CLIPS rules to extract higher-order components can

be combined in several ways. The underlying principle is that

22

components that are extracted by a rule in a file should not

be used for further extraction by another rule in the same

file. Following that principle, all rules that extract

higher-order components from the same type of lower-order

components, can be grouped together in a single file. The

rules for different components do not have to be combined in

a single file, however. The extraction rules could be

separated into a single file for each component, at the

extreme. More rules to be checked against in a single file

means slower running of the program, and greater memory usage.

Fewer rules in a single file therefore means faster execution,

and less memory usage. The complete code to do the extraction

is in multiple files, grouped by which lower order components

are needed (see appendix A).

Forward-Chaining vs. Backward-Chaining

There are inherent advantages and disadvantages in using

either forward or backward-chaining to extract higher-order

logic gates from a net-list. Both methods allow the

parallelization of the problem, as explained in the previous

section, as well as the ability to do multiple passes to

reduce the complexity of the problem. CPT Mike Dukes used

PROLOG (an inherent backward-chainer) to do his extraction

(2:31-87), while I used CLIPS (4:1-98), an inherent

forward-chainer. The basic difference between forward and

23

backward-chaining is that backward-chaining starts with the

goals, and works back to find applicable facts or sub-goals

(3:100-102), while forward-chaining fires any rules if there

are applicable facts (3:102-105), and then reaches the goal.

CLIPS allows the easy insertion or deletion of rules.

If a new rule is needed, it can be added without any other

modification to the code. What must be watched is the order

in which the rules are listed, as well as the side-effects of

the new rules. With PROLOG, facts and rules can be added

quickly, but with greater modification to the rest of the

code.

Both forward and backward-chaining need to remember

states already tried. Forward-chaining remembers patterns

already tried, for a rule, and retains them in memory until

there are no other combinations of facts to pattern match, or

the rule has been satisfied. Backward-chaining needs to

remember all prior goals up until the main goal, as well as

the pattern matching for the individual goal.

CLIPS has many more built-in predicates than PROLOG does.

Many of the functions that had to be written to do the

extraction in PROLOG were included in CLIPS(4:1-98). Another

advantage of CLIPS is the ability to compile the CLIPS source

programs on any machine that has a C compiler.

One big advantage a backward-chainer (PROLOG) has over

a forward-chainer (CLIPS) is the ability to back up and try

24

different permutations to satisfy a goal. The lack of this

ability in a pure forward-chainer is one disadvantage that

CLIPS has, and necessitated some extra programming to get the

same result.

Another disadvantage of CLIPS is its inability to do list

processing and recursion. These processes, used together,

would make the extraction problem more tractable.

List-processing would allow different permutations of

interchangeable inputs to be tried with a single rule, while

recursion would allow a rule to handle components that might

have any number of interchangeable inputs. The lack of these

abilities, as well as the inability in CLIPS to bind an OR

clause (3:26,34), necessitates the need for a unique

identifier with components that have two or more

interchangeable inputs or outputs.

Even though CLIPS has several disadvantages, the

advantages of ease of programming, readability of code, and

portability of the CLIPS program outweighs these

disadvantages.

Problems

A number of problems complicated the extraction of the

higher-order logic gates. These problems included running out

of memory, slowness of execution, different representations

of the same component using the same inputs in different order

25

and multiple copies of the same circuit.

The memory used by the program is directly related to the

number of components in the original file and the number of

rules in the program, as well as being exponentially related

to the number of pattern-matches needed to extract the

higher-order components. The problem of running out of memory

was reduced by running the program on a UNIX machine, instead

of a DOS machine. Since UNIX does not have a limit of 640k,

the program is able to access greater amounts of memory. The

Galaxy system, an ELXSI 6400 that was also used, has 64

megabytes of main memory.

Another way to reduce the amount of memory needed is to

break the file of rules into a number of smaller files. Each

file contains a subset of related rules. This splitting of

the rules substantially reduces the memory needed. With all

the rules for the first level of extraction in a single tile,

a DOS based machine with 640k of useable memory could not

finish the extraction. Separating those rules into two files

allowed the DOS machine to finish the extraction.

The last part of the solution is to run only part of the

net-list at one time. As explained earlier, the problem is

inherently parallel. Using only part of a net-list at a time,

and combining the results, uses much less memory since all

the net-list is not in memory at the same time and the amount

of patterns that need to be checked is exponentially smaller.

26

The methods used to take care of the memory problem also

take care of the speed problem. Breaking up the rules and the

net-list decreased the execution time by a factor of two. The

sum of the time needed to do the net-list in parts, and to use

only part of the rules is less than the time needed if all the

net-list is processed at once with all the rules. This is

because the number of rules add to the processing time

exponentially, instead of linearly.

The problem of keeping only one copy of each component

in the fact base at any given time was the most difficult

problem to solve at the beginning. There are two ways that

a component can be duplicated in the fact base.

The first way is an exact duplicate component, except for

the position coordinates. Two transistors can be in a "cif"

file with the same node names and different x and y

coordinates (there can be more than one transistor with

identical gates on a VLSI circuit, replicated to handle speed

and power requirements). The only difference between these

components is their position information. Only one transistor

with each set of node names is needed for the extraction of

logic gates. Extra c'pies of transistors will cause errors

in the extraction process. These duplications are handled by

the CLIPS routines that remove exact duplicates as well as

give each individual transistor a unique identifier.

The second form of duplication occurs if a component has

27

interchangeable inputs. Two components could have the same

inputs, but in a different order. If the inputs are

interchangeable, they do not have to be in the same order to

make the components identical. A transistor's source and

drain are interchangeable, so a transistor of the form (gate,

source, drain) is identical to one of the form (gate, drain,

source). Transistors are not the only logic components that

cause this problem. Any component with interchangeablp inputs

or outputs, such as NAND gates or NOR gates, has this problem.

Back-tracking can take care of this problem in a

backward-chainer, but extra work had to be done when using

CLIPS.

CLIPS code was written to help alleviate the problem of

interchangeable nodes for a transistor. A unique identifier

is added to each transistor, checking for duplicates and

removing them before any logic extraction is done. This

unique ID allows the program to try different input and output

combinations, then use the one that matches the pattern. As

each transistor is given a unique identifier, the fact base

is checked to ensure that no transistor already has those

exact node names for inputs and output. If there is no

duplicate, the transistor is asserted with a unique

identifier. If there is a one, the transistor is retracted.

Figure 8 contains example CLIPS code that does the removing

of duplicates, as well as the addition of a unique identifier.

28

(defrule add-id-n
(declare (salien~ce 101))
?n <- (n ?gate ?drain ?source ? ? ?x ?y)
(not (ntrans ? ?gate ?drain ?source ? ?))
(not (ntrans ? ?gate ?source ?drain ? ?))

(retract ?n)
(assert (ntrans =(gensym)

?gate ?drain ?source ?x ?y)))

(defrule del-id-n
(declare (salience 101))
?n <- (n ?gate ?drain ?source ? ? ?x ?y)
(or (ntrans ? ?gate ?drain ?source ? ?)

(ntrans ? ?gate ?source ?drain ? ?))

(retract ?n))

Figure 8. CLIPS Code to Add ID or Delete Transistor.

This solution will work for components with two or three

interchangeable inputs or outputs. For more than that number

interchangeable inputs or outputs, the number of combinations

becomes too great. The number of permutations needed to be

tried for each component increases exponentially with the

number of interchangeable inputs or outputs the component has.

For two, two combinations needed to be tried, for three, zix

combinations needed to be tried, and for four, twenty four

permutations need to be tried. The number of permutations in

the order of the interchangeable inputs or outputs that needs

to be checked is n!, where n is the number of interchangeable

inputs or outputs.

For multiple components, each with three or more

29

interchangeable inputs or outputs, the problem is even worse.

As explained earlier, multiple inputs or outputs which are

interchangeable mean that more patterns need to be checked.

The multiplying factor is (a!)b, where a is the number of

interchangeable inputs or outputs in a single component, aiid

b is the number of components that must be matched that have

that number. For components with more than three

interchangeable inputs or outputs, using a unique identifier

will not be able to replace lists, recursion, and

backtracking. The number of different patterns that would

have to be checked is prohibitively high. For the scope of

this thesis, this limitation did not cause a problem, but for

a general purpose extraction and display system, it would.

Results

The extraction program has been te'ted with a

2400-transistor circuit on the GALAXY computer, an ELXSI 6400

with 10 CPUs rated at 8 MIPS each. It took 120 minutes of cpu

time to process the list. It was also tested o., a

120-transistor circuit, on a 20 Mhz 386 based computer running

DOS, rated at 2.5 mips. The extraction took less than 5 cpu

seconds.

At present, the programs can handle transistors,

inverters, NAND-gates, NOR-gates, clocked inverters, buffers,

multiplexors, exclusive NOR-gates, exclusive OR-gates, and

30

D flip-flops. As more types of components are needed, they

can be easily added.

Components with multiple interchangeable inputs or

outputs cause problems in the logic extraction. Adding a

unique ID to each component can help alleviate the problem for

components with only two or three interchangeable inputs or

outputs. For components with more than three, the problem can

be resolved using recursion, lists, and backtracking -- which

CLIPS does not have in the present version.

31

III. Graphical Display

Introduction

This chapter discusses the second part of the process of

creating a graphical display. It covers how the graphical

representation of the extracted components is achieved. The

sections of the chapter are the tasks to be done, procedures

followed to achieve the graphical display, and problems

encountered. The part on procedures to be followed is broken

into smaller sections described in the tasks section. The

final section of this chapter is a summary of results. A

user's manual on how to use the graphical display is in

appendix D.

Tasks

The first part of the problem of creating a graphical

display, representing a circuit symbolically and extracting

higher-order logic gates from a net-list, was discussed in the

previous chapter. The solution to the remaining part of the

problem, how to graphically represent the extracted

components, is presented in this chapter.

Graphically representing a circuit is the displaying of

the components of a net-list on a graphics device, i.e.,

showing the standard symbol for each extracted component on

a computer screen at the same relative positioi. that it

32

occupies in the circuit. The problem of displaying the

circuit decomposes into five smaller tasks.

The first task is to find the correct relative position

of the extracted components. That task is taken care of

during the extraction routines. The second task is to find

what the maximum and minimum x and y coordinates of the chip

are, so that the graphics display can be correctly scaled.

The third task is to correctly parse the file containing the

extracted components, and to pass the information to the

graphics routines. The fourth task is to initialize a

graphics surface, allowing input from the user. The fifth and

last task is to draw the components on the screen, labeling

them with the names of their connected nodes.

Finding the Relative Location of Components

The first task, finding the correct relative location for

the extracted components, is handled by the extraction

routines. The new x and y coordinates for the extracted

component are the averages o' the x and y coordinates of the

lower-order components composing the higher-order gate. This

method was chosen because it was the simplest way to assign

coordinatcs to a newly extracted component. Figure 9 shows

an extract of the CLIPS code which extracts an inverter and

gives it a new location. The function "bind" binds the value

of the solved expression to a variable (3:34). If there were

'3

n lower-order components, then the new x and y locations would

be the sum of the x and y coordinates of the components

divided by n.

(defrule inverter
(or (ptrans ?idl ?gate vdd ?a ?xl ?yl)

(ptrans ?idl ?gate ?a vdd ?xl ?yl))
(or (ntrans ?id2 ?gate gnd ?a ?x2 ?y2)

(ntrans ?id2 ?gate ?a gnd ?x2 ?y2))
-p <- (ptrans ?idl $?)
?n <- (ntrans ?id2 $?)

(bind ?xa (+ ?xl ?x2) 2))
(bind ?ya (7 (+ ?yl ?y2) 2))
(retract ?p ?n)
(fprintout component "(inv "?gate" "?a" "?xa"

"?ya") "crlf))

Figure 9. CLIPS Code to Extract Inverter and
Find New x and y Coordinates

It is possible that two extracted components might be

given the same, or overlapping locations. This problem is

discussed in the problem section.

Finding the Extrema of the Component Coordinates

The next task is finding the maximum and minimum x and

y coordinates of the components. These extrema are needed to

determine the size and shape of the SunCore window when it is

initialized. This task is handled by a CLIPS routine

"findext.clp" that is run after the extraction is complete.

34

The code for "findext.clp" is in appendix A.

The algorithm implemented in "findext.clp" finds an x

coordinate, then finds an x coordinate larger than the one

before, checking the whole fact base until the largest x

coordinate is found. The minimum x coordinate is found in the

same manner, as are the largest and smallest y coordinate.

After the largest and smallest x and y coordinates are found,

they are written to the file "scaled.clp", in the form

(range xmin xmax ymin ymax)

where xmin is the minimum x, xmax is the maximum x, ymin is

the minimum y, and ymax is the maximum y. The components are

then written to the file one at a time, converting the x and

y coordinates to integers as they are written. Figure 10 is

an example of this type of file, using the clock generator

circuit described in the next section. The first line is the

maximum and minimum x and y coordinates for this circuit, and

the x and y coordinates have all been changed to integers.

Parsing the CLIPs file

The file that is produced by "find.ext" must be parsed

to pass the values to the graphics routines. This is done by

reading each line into a buffer, stripping off the

parentheses, then using the SSCANF() (5:246) function of C to

separate the different parts of the line and bind the values

to variables. Since the graphics routines are written in C,

35

(range -20587 74850 -10050 6112)
(inv 444 450 14925 -1050)
(inv 449 443 5175 -900)
(inv 450 424 17025 -675)
(nor2 gen45 329 424 447 20475 -675)
(nor2 gen44 447 453 329 24262 -525)
(inv 424 453 27450 0)
(inv IZ go 498 1500 -225)
(nand2 gen43 498 450 449 3150 -225)
(inv 53 OZpq2 74850 -4425)
(inv 329 277 18600 -8925)
(buffer 277 53 32850 -10050)
(buffer 443 444 8925 -1050)
(buffer 447 533 300 6112)
(buffer 533 OZpql -20587 412)

Figure 10. Circuit File with Extrema

a function call with parameter passing is needed to pass the

values to a graphics routine. The code for "drawit.c" which

does the stripping and parsing, as well as the rest of the

graphical display, is in appendix B.

Initializing a Viewing Surface

Finding the correct graphics routine to use on the Suns

was the hardest part of creating a graphical display. Each

routine has its advantages and disadvantages. Overall,

SunCore (6:1-223) is the graphics package that is easiest to

use. SunCore commands are simple, have a direct mapping of

values to x and y moves, and was the easiest to learn in a

short time span.

The limitations of SunCore are that it allows drawing

36

using only lines, polylines, shading, and text (6:53-72).

Polylines are connected continuous lines. It does not have

built-in primitives for curves or circles. Despite this lack,

its graphics commands are the simplest, once a viewing surface

is initialized. A viewing surface must be initialized since

SunView allows multiple windows. The graphics routines need

to be told which surface or window it will be drawing in.

Another problem is that without massive programming,

SunCore can only draw in the calling window. This problem

was solved by creating a batch file which creates a new window

of size 900 by 900 in the upper left corner of the Sun's

screen, then calls the graphics routine from this window.

That batch file, "drawgate", is included in appendix B.

Like the graphics program's need to be told where to

draw, the mouse needs to be initialized to the display window

and told where to look for button inputs, and where to show

its icon. Mouse support is needed to allow easy exit from the

graphics display window back to the data input window.

Drawing the Component Symbols

The functions that actually draw the symbols are called

from within "drawit.c". When the gate type has been

determined by "drawit.c", a retained segment is opened and the

appropriate function is called with the parameters for node

names and x and y coordinates passed to it.

37

Each type of component that can be created by the

extraction process has a corresponding function which will

draw it on the screen. Depending on the level of extraction,

the symbols are drawn on the screen in different sizes.

Supposing the smallest components are unit size, components

at the next level of extraction are roughly two units by two

units, and the next level roughly four units by four units.

Each subsequent level of extraction has its symbols roughly

doubled in size. Symbol size, as well as size of the text of

the node names, changes with the level of extraction of the

component. Figure 11 is a list of the symbols so far

implemented, along with their level of extraction, 0 being the

lowest level. Figure 12 is a screen from the graphics display

showing all the symbols implemented so far, and their relative

sizes.

ntrans 0
ptrans 0
inv 1
tgate 1
nand2 1
nor2 1
clk inv 1
buffer 2
mux 2
xnor 2
xor 2
dff 2

Figure 11. Size Level of Implemented Symbols

38

cK~1 input ouput

DDDFFQQ ck A
P2 i npt tput B output

Bupu cnput 1

input2 MUX u pu t

n put aoutput input oUtput c n't 2
Inp u tE : inputf >

inpu t a output gateiVq.j1/1Ja te2

Abar

Figure 12. Symbols Implemented by the Display

39

The basic structure of the functions to draw all the

symbols is identical. The code starts with a pair of static

variable structures which hold a list of x moves and y moves.

The function moves to the beginning x and y coordinate, with

an oiset deceLm±itQ± br znc cIevc or uxtraction of the

component being drawn. A polyline is then drawn, using the

data in the pair of structures. Finally, the node names are

added after the character size is set. Additional polylines

are added if the symbol is cannot be drawn with a single

continuous line. Figure 13 is the function to draw a buffer.

It is an example of a function to draw a basic symbol. The

functions to draw the rest of the symbols are located in

appendix B.

A test driver program , "testgate.c", was written to

assist in designing all the symbols, by allowing the display

of each symbol in the same location on the graphics display

by inputting the symbol name. During the design of the

symbols, each one had to be drawn repeatedly. This program,

"testgate.c", allowed display of any symbol, without using a

circuit file. The program "testgate.c", and the associated

batch file "drawtest", are located in appendix C.

Problems

As mentioned earlier, two of the problems encountered

were the inability to draw in a separate window, and the lack

40

#include <usercore.h>
#include <string.h>

static float bufferx[] = (1000.0, 400.0, -400.0,
-1000.0, 0.0, -400.0,
400.0, 0.0);

stat -1)at -... F..,ery[] = (500.0, 0 0, 1) , , 5"§0 0,
-500, 0.0, 0.0, -500.0);

buffer(xo, yo, gatel, gate2)
float xO, yO;
char *gatel, *gate2;

move abs 2(xo+2000.0, yO+500.0);
polylinerel_2(bufferx, buffery, 8);
set charspace(50.0);
set charsize(160.0, 160.0);
moverel_2(-210.0*(strlen(gatel)+0.5), 670.0);
text (gatel) ;
move abs 2(xo+3100.0, yO+1170.0);
text(gate2);

I

Figure 13. Function to Draw a Buffer

of built-in primitives to draw curves. Other problems that

occurred were the inability to see program prompts from the

graphics screen, and to reply to them. The most serious

problem, for which no solution has been implemented, is the

possibility that two or more extracted components have the

same x and y coordinates. A similar problem is how to scale

the symbols correctly so that they will not overlap if the x

and y coordinates of two symbols x are too close to each

other. All the problems, except the last two, were solved in

a workable manner.

41

The inability to draw in a separate window, and the

problem of getting and giving program prompts, are related.

The difficulty is that the program cannot write to the screen

as standard output while the screen is initialized in graphics

mcd 1 No+ he' r window r' be written to. either. The problem

was solved by switching the window between graphics and text

mode. After user choices are made, the program switches to

graphics mode, and displays the graphical display until the

right mouse button is pushed while the pointer is in the

graphics window. Once the mouse button is pushed, the window

switches back to text mode to get more user inputs.

The problem of the lack of pri[itives to draw curves was

solved by writing a C program "circlept.c". This program asks

for the number of points, and the radius, then gives the x

moves and y moves to draw a circle of the given radius,

composed of that number of points. The points start and end

on the e +treme left side of the circle, since the major use

of the program was to draw the inverter bubbles on the right

side of some of the gates. The code for "circlept.c" is in

appendix B.

The problem of two different extracted components having

the same coordinates is caused by two different factors. The

first factor is the simple method in which the coordinates are

averaged. Since the new coordinates are just the averages of

the old coordinates, duplication of coordinates can occur, if

42

the averages of two different sets of component come out to

be the same. The second factor is the choice of transistors

kept out of duplicate sets. The first transistor encountered

is the one kept, although another transistor might have a

better location. Since all locations derive from the

locations of the transistors, this is part of the cause of the

problem. The way to solve this problem would be to have the

rule-base system check the coordinates of all other components

before assigning new coordinates to a newly extracted

component. This solution was not implemented due to time

constraints placed on this research, and the increase in

processing time it would cause.

The problem of overlapping symbols is caused when two

ccemponents are too close to each other. This problem is

caused by the same factors that caused the previous problem.

A solution to this problem, which was also not implemented due

time constraints placed on this research, is to allow the

symbols' sizes to be scaled. This solution would not stop

all overlaps, but would stop most.

The problem of overlapping symbols increases with the

decrease in the size of the technology used to design the

circuit, as well as increasing with the number of transistors

used in the circuit. These factors affect the overlaying of

two components exactly the same way.

43

Results

The graphical display of symbols of components was

achieved by using the built-in SunCore graphics routines of

the Sun workstation. Processing time to display the graphics

is negligible, taking under a second. The majority of the

processing time is used to open the SunView window in which

the graphics are drawn. On a Sun 3/50 monochrome machine, the

creation of the window takes 5 seconds. It takes less time,

3 seconds, to set up the window on the color Sun 3/60 system.

This is due to the fact that the Sun 3/60, with 8 megabytes

of RAM, can continue more processes without swapping memory,

than the Sun 3/50, which has 4 megabytes of RAM. The time

taken to read the CLIPS data file is also negligiLlc for the

small zIrcuit of 120 transistors tested.

44

IV. Clock Generator Circuit Example

Introduction

A single VLSI design was used to determine the

performance of the logic extraction and the graphical display.

'Plugh a minimal test, this extraction and display provides

a proof of concept for (a) logic extraction using CLIPS, and

(b) graphical display on a Sun 3 workstation. It also

demonstratcd the need for more capabilities than were designed

into the system. Conclusions and recommendations are

discussed in the next chapter.

The circuit that is used as an example is the clock

generator used by CPT Dukes as an example in his thesis

(2:76-78). One reason this circuit was chosen was because it

consists entirely of inverters, NOR gates, and a NAND gate;

all implemented using Static CMOS design. Therefore no

transistors were left after extraction. The count of only 116

transistors, a~id only 42 unique transistors, in the circuit

allowed design and execution of extraction program on a

DOS-based machine with only 640k of memory available to the

program. The low component count of the extracted circuit

made testing the graphical interface simpler. Another reason

was that the higher-order logic of the circuit was already

known, and could be used to judge the "correctness" of the

extraction. Figure 14 is a circuit diagram of the clock

45

generator, as designed. The example is described in two

sections: The first concerns the extraction; the second, the

graphical display. A summary of the example is included at

the end of the chapter.

"1 59 n443 n n444 n45

n.450-

n2 n453. r132

n45n0

n.329
447

Figure 14. Circuit Diagram of Clock Generator
(Figure from 2:78)

46

Extraction

The first step of the extraction was the conversion of

the form used by the "cif" file for the clock generator

circuit into the form that CLIPS can read. This conversion

took less than one second on a 20Mhz 386 DOS machine using

the program "sim2clip". Both the original "1sim" file and the

CLIPS file contain 116 transistors. Duplicate transistors

found in these files are removed during the extraction

process. Due to the length of the files, the "sim" file of

the clock generator circuit and the CLIPS file "good.clp" are

included in appendix B, rather than being presented in this

chapter.

The extraction process, using the CLIPS files trl.clp,

tr2.clp and tr3.clp, took less than 5 cpu seconds on Galaxy,

an ELXSI 6400; less than 5 cpu seconds on a Sun 3/60; and less

than 5 seconds on a 20Mhz 386 DOS machine. Finding the

extreme x and y coordinates took less than a second on all the

machines. Figure 15 is the extractel file of components for

the clock generator circuit.

Comparing the extracted components in figure 15 to the

circuit diagram in figure 14 shows only a few differences.

These differences can all be attributed to the combination of

pairs of inverters into buffers. Logically the components in

the circuit diagram in figure 14, and the components listed

in figure 15 are the same. The extraction process as done

47

(range -20587 74850 -10050 6112)
(inv 444 450 14925 -1050)
(inv 449 443 5175 -900)
(inv 450 424 17025 -675)
(nor2 gen45 329 424 447 20475 -675)
(nor2 gen44 447 453 329 24262 -525)
(inv 424 453 27450 0)
(inv IZ_go 498 1500 -225)
(nand2 gen43 498 450 449 3150 -225)
(inv 53 OZpq2 74850 -4425)
(inv 329 277 18600 -8925)
(buffer 277 53 32850 -10050)
(buffer 443 444 8925 -1050)
(buffer 447 533 300 6112)
(buffer 533 OZ_pql -20587 412)

Figure 15. Extracted Clock Generator Circuit

on the ELXSI, a Sun 3/60, and a 80386 based DOS machine, with

identical results.

Display

The example display of the whole circuit, discussed later

in this chapter, was done on a monochrome Sun 3/50 workstation

with 4 megabytes of RAM. The actual creation of the display

took less than one second. It takes between 4 and 10 seconds

to create the shelltool window in the Sunview windowing

system, however, depending on how many other windows are open

in the environment. This time lag is only for the first

display in a session, nct for subsequent displays in the same

session.

This shelltool window is created by running batch file

48

"drawgate", which sets up a shelltool window of known size

and starts the actual drawing program "drawit.c" in the

window. The known size is needed to get correct aspect ratios

for the displayed symbols. Figure 16 is the batch program

"drawgate". The code for "drawit.c", as well as the functions

to draw all the components, are listed in appendix B.

#!/bin/csh -f
shelltool -Wp 0 0 -Ws 900 900 "'drawit"

Figure 16. Batch File to Open Window

After the batch file was run, the name of the file

containing the circuit was asked for, as well as the

coordinates of the window of the part of the circuit to view.

Two different displays of the circuit are included to

show the resolution of the display depending on the portion

of the circuit displayed. The first display, shown in

figure 17, is of the whole circuit. The values entered as the

maximum and minimum values for x and y were the extreme values

found by the extraction routines. This display is shown to

illustrate the limitations of viewing the whole circuit at

once.

From figure 17, it is obvious that the details of the

components cannot be discerned when the whole figure is

displayed. A look at the complete circuit does help, however,

49

Figure 17. Display of Whole Circuit

50

to decide where to zoom for further views. It also shows the

number of components that are in the extracted file, though

without enough resolution to discern their node names, or even

what some of the components are.

The second display, shown in figure 18, is a closeup of

part of the circuit. This display was chosen to illustrate

the legibility and usefulness gained by viewing part of the

circuit. Figure 18 is a closer look at the part of the

circuit within the x range of 16000 to 30000, and the y range

from -10000 to 8000. This view is of a large enough portion

of the circuit to show connections between different

components, yet small enough so that the coinponents and their

interconnections are clearly identifiable. This display is

of the type which would be the most useful for an engineer

doing reverse engineering, or original design. Using the

coordinates from MAGIC for part of a circuit, an engineer

could determine what that part of the circuit is. This is the

real power of the graphical interface.

Figure 19 is the session that produced both aforementioned

displays.

Summary

The task of extracting the higher-order logic components

of the clock generator circuit was accurately completed by the

CLIPS extraction routines. The extracted components were

51

Figure 18. Close-Up Display of Circuit

52

logically identical to components shown in figure 14. The

graphical display symbolically showed the connections between

the different components, or the relative location of

components, depending on the view displayed. The extraction

and display of the clock generator circuit demonstrated that

the extraction routines work, and that the graphical display

program is capable of reading a CLIPS file and displaying it

on a Sun 3/50 or Sun 3/60 workstation.

53

r~le contalns the circult)

'e jrdinato limits are as folos:

,h3t cart of the screen do you wish to display'
P'ease enter "iAnin >a ax ymin ymax" without qoutes.
- .308 80888 -18888 11888

.c&, you like to do another file or view, y or n' y
,at ;,le contains the circuit?

e ::ordinate limits are as follows:
mln = -28587
x<ma. 79858

-18858

.- at oart of the screen do you wish to display"
Please enter "xmin :anax -,min ymex" without qoutes.
1008 38808 -18808 8880

would you like to do another file or view, y or n' r[]

Figure 19. Display Input Session

54

V. Conclusions and Recommendations

Introduction

Tn this chapter, conclusions and recommendations

resulting from this research are presented. Suggested

improvements of the extraction system and graphical display

are discussed and topics for follow-on theses are presented.

A summation of the project is included at the end of this

chapter.

Conclusions

CLIPS, a forward chainer, has advantages and

disadvantaqes over PROLOG, a backward-chainer. The advantages

include quick implementation of understandable rules and

easily divisible code. Another advantage is the ability of

CLIPs to run identical code on any system that has a C

compiler. Time of execution to extract a circuit seems to be

comparable for both CLIPS and PROLOG. Both took under 10

seconds for the clock generator circuit (2:77) . Disadvantages

include the need to work around the lack of back-tracking,

recursion and list-processing; abilities which are inherent

in PROLOG. The addition of these abilities in a later version

of CLIPS would make it a more suitable choice for a project

of this type. The lack of these abilities hinders the

usefulness of CLIPS when dealing with many levels of extracted

55

components. Overall, the use of CLIPS as the language for the

circuit extraction portion of this thesis showed that a

forward-chainer can do a job comparable to PROLOG with the few

aforementioned exceptions, producing a workable circuit

extraction system.

The use of SunCore graphics as the graphics package to

implement the graphical display portion allowed quick

programming of the interface. With the ease of programming

come certain limitations. The inability to produce graphics

in any window other than the current window in SunView

hindered the development of the interface. More time to learn

about SunCore graphics might have revealed a way around this

problem.

The graphical display program, as designed, can display

any number of circuit components if they are in a file of the

proper form The graphical display program will scale the

size of the components, dependent upon the portion of the

circuit being drawn. As less of the circuit is displayed, the

individual components are drawn larger, and as more of the

circuit is displayed, the components are drawn smaller. This

feature allows both the zooming and panning of the extracted

circuit by the choices of the minimum and maximum x and y

coordinates displayed. It also allows precise control over

what portion of the circuit is displayed.

This method of display has some inherent problems. The

56

program will blindly place a component wherever the file says

there is one. overlapping or covering previously drawn

components. This problem is minimized by the scaling of the

size of the components. Unfortunately, the extraction routine

can place two or more components into too-close proximity.

Scaling cannot remove all overlaps.

Overall, the graphical display does what it is designed

to do. It displays higher-order logic components that have

been extracted from a net-list, on a Sun 3 workstation, in the

relative posiLions Lhey ocuupy on the chip. It allows zooming

and panning, as well as sequential view of different files.

As implemented, the circuit-extraction system and graphical

display can help an engineer design a circuit, or help reverse

engineer an unknown circuit.

Recommendations

The recommendations that follow from this thesis can be

divided into three different portions: improvement of the

extraction routines, improvements to the graphical display,

and extensions to the concept of a graphical interface. All

recommendations would fill deficiencies that have been

discovered during the course of implementation of the

extraction system and graphical display.

During the course of this thesis, the ability for CLIPS

to perform logic extraction has been confirmed. The ability

57

of CLIPS to run identical code on any system that has a C

compiler is a big advantage over other AI languages, such as

PROLOG or LISP, which have limited numbers of platforms, or

lack of compatibility due to different dialects of the

languages running on different platforms. For these reasons,

the use of CLIPS for logic extraction should be explored

further.

Additional logic components should be added to the

system, as well as new levels of extraction. Other changes

to the system should also be made to support the other

recommendations to be made.

The graphical display, as mentioned earlier, does what

it was designed to do, though in a less user-friendly manner

than desired. Most of the recommendations to be made

concerning the display revolve around ease of use. These

recommendations fall into the categories of improving the

mouse support, improving the visual display,and improving the

use of the features of the SunView environment.

Greater use of the mouse would enhance the friendliness

of the system. The ability to use the mouse to pick a window

to zoom into would make the system easier to manage. Another

use of the mouse would be to pan the portion of the circuit

viewed, to create a sliding window effect. These added

features would make the system more of a usable CAD tool.

The visual display could be improved in several ways.

58

Coordinate axes along the sides of the display would help the

precise zooming of view, and location of components. The

addition of connecting lines between connected nodes on

--oponents, instead of just node name labels, would also make

the display simpler to comprehend. Another recommendation is

to make the symbols all scaleable in size, allowing larger

symbols for portions of circuits where individual components

are not as near to one another, and smaller symbols where the

components are narer to one another.

Several features incorporating greater use of the SunView

environment would improve the graphical display. These

include the use of separate command and graphics windows,

pop-up or pull-down menu support, and multiple views of the

same circuit. The use of SunCore innibits the development of

some of these features. To fully utilize the features

mentioned, the graphical display should be rewritten to

utilize either Sun CGI or Pixwirn graphics.

During the course of the thesis, the limitations of just

showing symbols representing extracted components in their

relative positions were discovered. Due to sizing problems,

the circuit as a whole cannot be seen without making the

individual symbols too small. An extension to the concept of

a graphical display, which would entail considerable AI

programming as well as graphics programming, would be the

creation of a circuit diagram from the extracted components.

59

This display would show all the components extracted in the

manner of the circuit diagram in chapter IV, figure 18. An

extensions of this magnitude would require four parts. The

first part would be assigning new locations to all the

components, such that none overlap, and components are near

the components to which they are connected. The second part

would be rotating the components to ease the problem of

routing lines between different components. The third part

would be routing the lines. The last part would be creating

a program that can display the diagram, zoom in and out, and

pan easily over the whole circuit. These abilities would be

needed for circuits that have too many components for the

individual components to be recognizable at full view. A

program of this type could be adapted from the graphical

interface created during this thesis.

A thesis implementing the foregoing recommendations would

create a greatly needed CAD tool. This tool, in conjunction

with the extraction system and graphical display described in

this thesis, would help close the CAD cycle, as well as easing

thp tAqk of reversp-engineering circuits for which no circuit

descriptions exist.

Summary

The conclusions presented in this chapter illustrate the

value of the research to the engineering community. The

60

extraction system and graphical display can be used to help

design a new circuit, or reverse-engineer a circuit whose

function is not totally known.

61

Appendix A: Extraction Code

SIM2CLP.C, conversion program from "sim" to CLIPS./**

* Date: 8 November 1989
* Version: 1.0
.

* Title: sim2clip Translation Routine
* Filename: sim2clip.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3, MS-DOS V3.3
* Lanciuage: C
* Description:
* This routine takes a transistor net-list
* from an ESIM file produced by MEXTRA, and
* generates a CLIPS formatted description for
* the same file. All Fields are used.

* Passed Variables: None
* Returns: None
* Files Read: new.sim
* Files Written: good.clp
* Documentation:
* This program is a modification of sim2pro,
* written by Capt Mike Dukes for his thesis
* (2:127).
* Special Instructions : None

#include <stdio.h>
#define max buf 128
char buffer[maxbuf]; /* Holds the origional line.*/
char tempbuf[max_buf]; /* Holds the converted line.*/

/* Variables */

int iteration, count,count2;
FILE *fd,*od;

main()

/* Opens input and output files */

fd=fopen("new.sim","r");
od=fopen("good.clp","w");

62

/* Clearing the temporary buffer *

f or (count=0 ;count<max-but ;count++)

tempbuf[count]=0;

/* Get first line, which is thrown away. *

fgets(buffer,max_buf,fd);
while(fgets(buffer,maxbuf,fd) != NULL)

/* get next line, if it exists *

/* Check for N type transistor *

if (buffer[01==' e')

/* Set variables, then translate the first three
characters in the buffer. *

count=3;
count2=2;
iteration=0;

tempbufLo]=' (';
tempbuf[1]='n';

tempbuf[2]=' 1;

/* Check to insure there are characters left, and
that only 7 fields are translated. *7

while((buffer[count2] !=0) &(iteration!=7))

7* Check for a Vdd, and translate it to a vdd. *

if ((buffer[count2]=='V')&(buffer[count2+1]==d')&
(buffer[count2+2]=='d'))

tempbuf~count++]='v';
tempbuf[count++]='d';
tempbuf[count]='d';
count2=count2+2;

7* Check for a OND, and translate it to a gnd. *

63

else if ((buffer[count2]=='G')&
(buffer[count2+l]=='N')&
(buffer[count2+2]=='D'))

{epu~on+]Il
tempbuffjcount++]='g';

tempbuf[count]='d';
count2=count2+2;

/* Check for a blank, and write it. *

else if(buffer[count2]==' '

ternpbuf[count]=' '

iteration++;

/* Check for a # and delete it. *

else if(buffer[count2]=='#')

--count;

7* Write anything else as is. *

else

tempbuf [count]=buffer[count2 1;

count++;
count2+±;

7* Write the closing "1)" and crlf. *

count=count-l;
tempbuf[count++]=') ';
tempbuf [count++]=10;
tempbuf [count] =0;

/* Write the tembuf back to the original buffer, then
write it to the output file. */

for (count= ; count<max-buf ;count++)

buf f er[count] =tempbuf [count]

fprintf(od,"%s",buffer);

64

for (count= ; count<max-buf ;count++)

tempbuf ~count 1=0;

/* Check for P type transistor *

else if(buffer[O]=='p')

/* Set variables, then translate the first three
characters in the buffer. *

count=3;
count2=2;
iteration=0;
tempbuf[0]=' (';
tempbuf[lj='p';
tempbuf[2]=' 1;

/* Check to insure there are characters left, and
that only 7 fields are translated. */

while((buffer[count2]!=0)&(iteration!=7))

/* Check for a Vdd, and translate it to a vdd. *

if((buffer[count2]=='V')&(buffer[count2+1]=='d')&
(buffer[count2+2]=='d'))

(epu~on+]Il
ternpbuf[count++]='v';

ternpbufrcountl='d';
count2=count2+2;

/* Check for a GND, and translate it to a gnd.*,

else if ((buffer[count2l=='G')&
(buffer[count2+l]=='N')&
(buffer[count2+2]=='D'))

ternpbuf~count++]='g';
tempbuf[count++]='n';
tenmpbuf[count]='d';
count2z=count2+2;

65

/* Check for a blank, and write it. *

else if(buffer[count2]==' '

tempbuf[count]=' '
iteration++;

/* Check for a # and delete it. *

else if(buffer[count2]=='#i')

--count;

/* Write anything else as is. *

else

teinpbuf [count] =buffer [count2];

count++;
count2++;

7* Write the closing 11)" and crlf. *

count=count-l;
tempbuf[count++]=')';

tempbuf [count++] =10;
tempbuf [count] =0;

/* Write the tembuf back to the original buffer, then
write it to the output file. */

for(count=0 ;count<max-buf;count++)

buffer [count] =tempbu f[count];

fprintf(od, "%s" ,buffer);
for(count=0 ;count<max-buf;count++)

tempbuf [count] =0;

/* Close both files *
fclose(fd);
fclose(od);

66

TRN.BTT, batch file which runs extraction process.

(load "trl.clp")
(reset)
(run)
(clear)
(load "tr2.clp")
(reset)
(run)
(clear)
(load "tr3.clp")
(reset)
(run)
(exit)

FINDEXT.BTT, batch file which runs findext.clp.

(load "findext.clp")
(reset)
(load-facts "outcomp2.clp")
(load-facts "comprem2. clp")
(run)
(exit)

67

TRI.CLP, first CLIPS file for first level of extraction.

;; TR1.CLP written by Capt Stuart Yarost as part of the
;; requirements for MS in Computer Engineering.

;; This file adds a unique identifier to every transistor in
;; good.clp, filters out unnecessary information, then builds
;; up the following components from the n and p type
;; transistors:
;; inverters
;; tgate
;; nand (2 input)
;; nor (2 input)
;; As it writes these components to the file outcompl.clp, it
;; retracts its component transistors from the database.
;; When it is complete, it writes the remaining facts to the
;; file compreml.clp.

;; load-facts loads the facts from good.clp.

(defrule load-facts
?i <- (initial-fact)

(load-facts "good.clp")
(retract ?i)
(assert (open-file)))

;; open-file opens outcompl.clp as a write only file.

(defrule open-file
(declare (salience 101))
?i <- (open-file)

(open "outcompl.clp" component "w")
(retract ?i)
(assert (close-file)))

;; add-id-n adds a unique identifier to each n type
;; transistor, if a similiar n type transistor has not already
;; been asserted, with the same gate, and same source and
;; drain.

(defrule add-id-n
(declare (salience 101))
?n <- (n ?gate ?drain ?source ? ? ?x ?y)
(not (ntrans ? ?gate ?drain ?source ? ?))

68

(not (ntrans ? ?gate ?source ?drain ? ?))

(retract ?n)
(assert (ntrans =(gensym) ?gate ?drain ?source ?x ?y)))

;; del-id-n deletes a n type transistor if it has already been
asserted, with the same gate, source and drain.

(defrule del-id-n
(declare (salience 101))
?n <- (n ?gate ?drain ?source ? ? ?x ?y)
(or (ntrans ? ?gate ?drain ?source ? ?)

(ntrans ? ?gate ?source ?drain ? ?))

(retract ?n))

;; add-id-p adds a unique identifier to each p type
;; transistor, if a similiar p type transistor has not already
;; been asserted, with the same gate, and same source and
;; drain.

(defrule add-id-p
(declare (salience 101))
?p <- (p ?gate ?drain ?source ? ? ?x ?y)
(not (ptrans ? ?gate ?drain ?source ? ?))
(not (ptrans ? ?gate ?source ?drain ? ?))

(retract ?p)
(assert (ptrans =(gensym) ?gate ?drain ?source ?x ?y)))

;; del-id-n deletes a n type transistor if it has already been
;; asserted, with the same gate, source and drain.

(defrule del-id-p
(declare (salience 101))
?p <- (p ?gate ?drain ?source ? ? ?x ?y)
(or (ptrans ? ?gate ?drain ?source ? ?)

(ptrans ? ?gate ?source ?drain ? ?))

(retract ?p))

;; inverter writes an inverter, averaging the positions, and
;; retracts the component transistors from the fact base.

(defrule inverter
(or (ptrans ?idl ?gate vdd ?a ?xl ?yl)

69

(ptrans ?idl ?gate ?a vdd ?x1 ?yl))
(or (ntrans ?id2 ?gate gnd ?a Mx ?y2)

(ntrans ?id2 ?gate ?a gnd ?X2 ?y2))
?<- (ptrans ?idl $?)

?n <- (ntrans ?id2 $?)

(bind Mxa Q/ (+ ?x1 ?x2) 2))
(bind ?ya (/ (+ ?yl ?y2) 2))
(retract ?p ?n)
(fprintout component "(inv "?gate" "?a" "?xa" Wya")"crlf))

;tgate writes a tgate, averaging the positions, and retracts
;the component transistors from the fact base.

(defrule tgate
(or (ptrans ?idl ?gate ?a ?b ?xl ?yl)

(ptrans ?idl ?gate ?b ?a Mx ?yl))
(or (ntrans ?id2 ?h ?a ?b Mx ?y2)

(ntrans ?id2 ?h ?b ?a Mx ?y2))
?p <- (ptrans ?idl $?)
?n <- (ntrans ?id2 $?)

(bind ?xa (/(+ Mx ?x2) 2))
(bind ?ya (/(+ ?yl ?y2) 2))
(bind ?place (gensym))
(retract ?p ?n)
(fprintout component "(tgate "?place" "?gate" "?h"' "?a)
(fprintout component " "Wb" "Mxa" "?'4")"crlf))

;nand2 writes a nandgate, averaging the positions, and
;retracts the component transistors from the fact base.

(defrule nand2
(or (ptrans ?idl ?a vdd ?o M1l ?yl)

(ptrans ?idl ?a ?o vdd Mx ?yl))
(or (ntrans ?id2 ?a ?x gnd Mx ?y2)

(ntrans ?id2 ?a gnd ?x ?x2 ?y2))
(or (ptrans ?id3 ?b vdd ?o Mx ?y3)

(ptrans ?id3 ?b ?o vdd Mx ?y3))
(or (ntrans ?id4 ?b ?x ?o Ax4 ?y4)

(ntrans ?id4 ?b ?o ?x Ax4 ?y4))
?pl <- (ptrans ?idl $?)
?nl <- (ntrans ?id2 $?)
?p2 <- (ptrans ?id3 $?)
Mn <- (ntrans ?id4 $?)
(test (neq ?idl ?id3))
(test (neg ?id2 ?id4))
(test (neq gnd ?o))

70

(test (neq vdd ?o))
(test (neq ?x ?n~))

(bind ?xa (/(+ ?xl ?x.2 ?x3 ?x4) 4))
(bind ?ya (/(+ ?yl ?y2 ?y3 ?y4) 4))
(bind ?place (gensym))
(retract ?pl ?nl ?p2 ?n2)
(fprintout component "1(nand2 "?1place"l ?a" "?ib" II?o)
(fprintout component 1 I"?xal If->ya"l)"crlf))

;nor2 writes a norgate, averaging the positions, and
;retracts the component transistors from the fact base.

(defrule nor2
(or (ptrans ?idl ?a vdd ?x ?xl ?yl)

(ptrans ?idl ?a ?x vdd ?xl ?yl))
(or (ntrans ?id2 ?a ?o gnd ?x2 ?y2)

(ntrans ?id2 ?a gnd ?o ?x2 ?y2))
(or (ptrans ?id3 ?b ?x ?o ?x3 ?y3)

(ptrans ?id3 ?b ?o ?x ?x3 ?y3))
(or (ntrans ?id4 ?b gnd ?o ?x4 ?y4)

(ntrans ?id4 ?b ?o gnd ?x4 ?y4))
?pl <- (ptrans ?idl $?)
?nl <- (ntrans ?id2 $?)
?p2 <- (ptrans ?id3 $?)
?n2 <- (ntrans ?id4 ^??,
(test (neq ?idl ?id3))
(test (neq ?id2 ?id4))
(test (neq gnd ?o))
(test (neq vdd ?o))
(test (neq ?x ?o))

(bind ?xa (/(+ ?xl ?x2 ?x3 ?x4) 4))
(bind ?ya (/(+ ?yl ?y2 ?y3 ?y4) 4))
(bind ?place (gensym))
(retract ?pl ?nl ?p2 ?n2)
(fprintout component "I(nor2 "?place" II?aII "?b"I "?o)
(fprintout component "1 "?xa"I If?ya"l) Icrlf))

;close file closes outcompl.clp, then saves the remaining
;facts to the file compreml.clp.
(defrule close-file
(declare (salience -99))
?i <- (close-file)

(retract ?i)
(save-facts "compreml.clp")
(close component))

71

TR2.CLP, second CLIPS file for first level of extraction.

;" TR2.CLP written by Capt Stuart Yarost as part of the
;- requirements for MS in Computer Engineering.

This file loads the facts from compreml.clp, then builds
- up the following components from the n and p type

• transistors:
• - clocked-inverter
• As it writes these components to the file outcompl.clp, it

retracts its component transistors from the database. When
it is complete, it writes the remaining facts to the file
compreml.clp.

;; load-facts loads the facts from compreml.clp.

(defrule load-facts
?i <- (initial-fact)

(load-facts "compreml.clp")
(retract ?i)
(assert (open-file)))

;; open-file opens outcompl.clp as a append only file.

(defrule open-file
(declare (salience 101))
?i <- (open-file)

(open "outcompl.clp" component "a")
(retract ?i)
(assert (close-file)))

;; clk inv writes an clocked-inverter, averaging the
;; positions, and retracts the component transistors from the
;; fact base.

(defrule clk inv
(or (ptrans ?idl ?pl ?x ?drain ?xl ?yl)

(ptrans ?idl ?pl ?drain ?x ?xl ?yl))
(or (ntrans ?id2 ?gate gnd ?y ?x2 ?y2)

(ntrans ?id2 ?gate ?y gnd ?x2 ?y2))
(or (ptrans ?id3 ?gate ?x vdd ?x3 ?y3)

(ptrans ?id3 ?gate vdd ?x ?x3 ?y3))
(or (ntrans ?id4 ?p2 ?y ?drain ?x4 ?y4)

(ntrans ?id4 ?p2 ?drain ?y ?x4 ?y4))
?ptl <- (ptrans ?idl $?)

72

?ntl <- (ntians ?id2 $?)
?pt2 <- (ptrans ?id3 $?)
?nt2 <- (ntrans ?id4 $?)
(test (neq ?idl ?id3))
(test (neq ?id2 ?id4))

(bind ?xa Q/ (+ ?xl Mx Mx Mx) 4))
(bind ?ya (/ (+ ?yl ?y2 ?y3 ?y4) 4))
(retract ?ptl ?ntl ?pt2 ?nt2)
(fprintout component "(cik mnv "?pl" "?p2" "?gate" "?drain)
(fprintout component " "?xa" "?ya")"crlf))

;close file closes outcompl.clp, then saveq the remaining
;facts to the file compreml.clp.

(defrule close-file
(declare (salience -99))
?i <- (close-file)

(retract ?i)
(save-facts "'compreml.clp"')
(close component))

73

TR3.CLP, first CLIPS file for second level of extraction.

; TR3.CLP written by Capt Stuart Yarost as part of the
; requirements for MS in Computer Engineering.

•; This file builds up the following components from the n and
•; p type transistors as well as lower order logic gates:
"; buffer
• ; mux
"; xnor (2 input)
;; xor (2 input)
;; d-flipflop
; As it writes these components to the file outcomp2.clp, it
; retracts its component transistors from the database. When
; it is complete, it writes the remaining facts to the file
; comprem2.clp.

;; load-facts loads the facts from otcompl.clp and
;; compreml.clp.

(defrule load-facts
?i <- (initial-fact)

(load-facts "outcompl.clp")
(load-facts "compreml.clp")
(retract ?i)
(assert (open-file)))

;; open-file opens outcomp2.clp as a write only file.

(defrule open-file
(declare (salience 101))
?i <- (open-file)

(open "outcomp2.clp" component "w")
(retract ?i)
(assert (close-file)))

;; buffer writes a buffer, averaging the positions, and
;; retracts the ;; component lower level logic gates from the
;; fact base.

(defrule buffer
?invl <- (inv ?a ?b ?xl ?yl)
?inv2 <- (inv ?b ?c ?x2 ?y2)
(not (-inv ?b $?))
(not (-inv ? ?b $?))

74

(not (-inv ? ? ?b $?))
(not (-inv ? ? ? ?b $?))
(not (-inv ? ? ? ? ?b $?))

(bind ?xa (/(+ ?xl Mx) 2))
(bind ?ya ((± yl ?y2) 2')
(retract ?invl ?inv2)
(fprintout component "(buffer "?a" "?c" "?xa" "Tya") "crlf))

;mux writes a mux, averaging the positions, and retracts the
;component lower level logic gates from the fact base.

(defrule mux
(or (tgate ?idl ?g ?h ?a ?c ?xl ?yl)

(tgate ?idl ?g ?h ?c ?a ?x1 ?yl))
(or (tgate ?id2 ?h ?g ?c ?b Mx2 ?y2)

(tgate ?id2 ?h ?g ?b ?c Mx ?y2))
(test (neq ?idl ?id2))
?t1 <- (tgate ?idl $?)

(bin Txa (7 (+ ?x2 $?x)2)

(bind ?ya Q, (+ ?yl ?y) 2))

(retract ?tl ?t)
(fprintout component "(mux "?idl" "?g" "?h" "Ta" "?b""?'
(fprintout component " "?xa" "?ya")"crlf))

;xnor writes a xnor, averaging the positions, and retracts
;the component lower level logic gates from the fact base.

(defrule xnor
?invl <- (inv ?a ?an ?xl ?yl)
Tinv2 <- (inv ?b ?bn ?x2 ?y2)
(or (tgate ?idl ?b ?bn ?an ?xor ?x !y3)

(tgate ?idl ?b Abn Txor ?an A3J !y3))
(or (tgate ?id2 ?bn ?b ?a ?xor ?Y4 ?y4)

(tgate ?id2 ?bn Tb ?xor ?a ?x4 ?y4))
Ttgl <- (tqate ?idl $?)
?tg2 <- (tgate ?id2 $?)
(test (neq ?a ?b))

(bind Mxa (7(-?xl ?x2 Mx ?x4) 4))
(bind ?ya ((± Tyi ?y2 ?y3 ?y4) 4))
(bind ?place (gensym))
(retract ?invl Tinv2 Ttgl Ttg2)
(fprintout compovent "(xnor "Tplace" "Ta" "Tan" "Tb" "Tbn)
(fprintcut compon~ent " "Txor" "Txa" "Tya") "crlf))

75

;; xor writes a xor, averaging the positions, and retracts the
:; component lower level logic gates from the fact base.

(defrule xor
?invl <- (inv ?a ?an ?xl ?yl)
?inv2 <- (inv ?b ?bn ?x2 ?y2)
(or (tgate ?idl ?b ?bn ?an ?xor ?x3 ?y3)

(tgate ?idl ?b ?bn ?xor ?an ?x3 ?y3))
(or (tgate ?id2 ?b ?bn ?a ?xor ?x4 ?y4)

(tgate ?id2 ?b ?bn ?xor ?a ?x4 ?y4))
?tgl <- (tgate ?idl $?)
?tg2 <- (tgate ?id2 $?)
(test (neq ?a ?b))

(bind a (Q (+ ?xl ? ? ?x4) 4))
(bind ?ya (/ (+ ?yl ?y2 ?y3 ?y4) 4))
(bind ?place (gensym))
(retract ?invl ?inv2 ?tgl ?tg2)
(fprintout component "(xor "?place" "?a" "?an" "?b" "?bn)
(fprintout component " "?xor" "?xa" "?ya")"crlf))

;; dff writes a d-type flipflop, averaging the positions, and
;; retracts the component lower level logic gates from the
;; fact base.

(defrule dff
(or (tgate ?idl ?pl ?p2 ?d ?x ?xl ?yl)

(tgate ?idl ?pl ?p2 ?x ?d ?xl ?yl))
?ci <- (clk inv ?p2 ?pl ?g ?x ?x2 ?y2)
?inv <- (inv ?x ?g ?x3 ?y3)
?tg <- (tgate ?idl $?)

(bind xa (+ Al M M) 3))
(bind ?ya (/ (+ ?yl ?y2 ?y3) 3))
(retract ?ci ?inv ?tg)
(fprintout component "(dff "?pl" "?p2" "?d" "?g)
(fprintout component " "?xa" "?ya")"crlf))

;; close file closes outcomp2.clp, then saves the remaining
;; facts to the file comprem2.clp.

(defrule close-file
(declare (salience -99))
M <- (close-file)

(retract ?i)
(save-facts "comprem2.clp")
(close component))

76,

FINDEXT.CLP, CLIPS file to find extreme x and y values.

•; FINDEXT.CLP written by Capt Stuart Yarost as part of the
•; requirements for MS in Computer Engineering.

•; This file finds the maximum and minimum x and y
;; coordinates, then inserts them as the first fact in the
"; file of components.

; open-file opens as write only, the file scaled.clp.

(defrule open-file
(declare (salience 101))
?i <- (initial-fact)

(open "scaled.clp" component "w")
(retract ?i)
(assert (list limits))
(assert (close-file)))

;; first-big-x asserts a number as the largest x.

(defrule first-big-x
(declare (salience 100))
($?most ?x-val ?y-val)
(not (big-x ?))
(test (numberp ?x-val))
(test (numberp ?y-val))

(assert (big-x ?x-val))

;; big-x finds the largest x and asserts that fact

(defrule big-x
(declare (salience 100))
?xl <- (big-x ?x)
($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))
(test (> ?x-val ?x))

(retract ?xl)
(assert (big-x ?x-val))

77

;; first-small-x asserts a number as the smallest x.

(defrule first-small-x
(declare (salience 100))
($?most ?x-val ?y-val)
(not (small-x ?))
(test (numberp ?x-val))
(test (numberp ?y-val))

(assert (small-x ?x-val))

;; small-x finds the smallest x and asserts that fact

(defrule small-x
(declare (salience 100))
?xl <- (small-x ?x)
'$?most ?x-val ?y-val)
(test (numberp ?x-val1)
(test (numberp ?y-val))
(test (< ?x-val ?x))

(retract ?xl)
(assert (small-x ?x-val))

;; first-big-y asserts a number as the biggest y.

(defrule first-big-y
(declare (salience 100))
($?most ?x-val ?y-val)
(not (big-y ?))
(test (numberp ?x-val))
(test (numberp ?y-val))

(assert (big--y ?y-val))

;; big-y finds the biggest y and asserts that fact

(defrule big-y
(declare (salience 100))
?yl <- (big-y ?y)
($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))
(test (> ?y-val ?y))

(retract ?yl)
(assert (big-y ?y-val))

78

;first-small-y asserts a number as the smallest y.

(defrule first-small-y
(declare (salience 100))
($?most ?x-val ?y-val)
(not (small-y ?))
(test (numberp ?x-val))
(test (numberp ?y-val))

(assert (small-y ?y-val))

;siall-y finds the smallest y and asserts that fact

(defrule small-y
(declare (salience 100))
?yl <- (small-y ?y)
($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))
(test (< ?y-val ?y))

(retract ?yl)
(assert (small-y ?y-val))

;Asserts a fact of the largest new x and y values.

(defrule assert-limits
(declare (salience 50))
Olf <- (list limits)
(big-x ?big-x)
(small-x ?small-x)
(big-y ?big-y)
(small-y ?small-y)

(bind ?smallx (trunc ?small-x))
(bind ?bigx (trunc ?big-x''
(bind ?smally (trunc
(bind ?bigy (trunc ?L, ,-,
(retract ?If)
(fprint-ut component "(range "?small-" "?bigx" "?smally)
(fprintout component " "?bigy") "crlf))

79

;; write-all writes the rest of the components into the file
;; scaled.clp after the range information.

(defrule write-all
?comp <- ($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))

(retract ?comp)
(fprintout component "("$?most" "(trunc ?x-val))
(fprintout component " "(trunc ?y-val) ") "crlf))

;; close-file closes the file scaled.clp

(defrule close-file
(declare (salience -99))
?i <- (close-file)

(retract ?i)
(close component))

80

Appendix B: Graphical Display Code

DRAWGATE, batch program to run "drawit".

#!/bin/csh -f
shelltool -Wp 0 0 -Ws 900 900 "drawit"

DRAWIT.C, program to display extracted circuit.

* Date: 8 November 1989
* Version: 1.0
.

* Title: Graphical Display Routine
* Filename: drawit.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description:
* This routine takes a component net-list
* produced by the extraction routines, and
* displays graphically the circuit.
* Passed Variables: Component type, node names,
* x and y coordinates.
* Returns: None
* Files Read: xxx.clp, where xxx is the filename of an
* output file from the extraction process.
* Hardware Input: Right mouse button.
* Modules Called: buffer.c clk inv.c dff.c inv.c mux.c
* nand2.c nor2.c ntrans.c ptrans.c
* tgate.c xnor.c xor.c
* Files Written: none
* Special Instructions : Must be run in the SunView
* environment.
* Run batch file "drawgate" to
* start the program.
****** **
#include <stdio.h>
#include <string.h>

#include <usercore.h>
#define max buf 128
#define minview(n) (0.5 - ((n)/2))
#define maxview(n) (0.5 + ((n)/2))
FILE *fd;
char fname[14];
char buff[max buf];

81

char tempbuf[max_buf 1;
char qatetype[20], gatel[20], gate2[20], gate3[20],

gate4[20], gate5[20], gate6[20],
junk[201, another[2];

int xpos, ypos, count, count2, butt, xmax, xmin, ymax, ymin;
int pixwinddo;
float xrange, yrzange, xperc, yperc;
struct vwsurf vsurf =DEFAULTVWSURF(pixwindd);

struct vwsurf vsurf 2 DEFAULTVWSURF(pixwindd);

main()

another[O] = Y';
while (another[O] == Y')

do

printf("What file contains the circuit?\n");
scanf("%s", fname);
fd=fopen(fname, "r");
)while (fd==NULL);

fgets(buff,max_buf,fd);
count2 =1;
count =1;
while(buff[countjl!=') ')

tempbuf[count-l] buff[count];
count++;

tempbuffcount-l]=' '

tempbuf[count]=lO;
tempbuf[count+l]=O;
sscanf(tempbuf, "%s %d %d %d %d", gatetype, &xmin,

&xmax, &ymin, &ymax);
printf("The coordinate limits are as follows:\n");
printf('"xmin = %d\n"',xmin);
printf("xmax = %d\n",xmax+5000);
printf("'ymin = %d\n"',ymin);
printf("ymax = %d\n\n",ymax+5000);
printf("What part of the screen");
printf(" do you wish to display?\n");
printf("Please enter \"xmin xmax ymin ymax\"):
printf(" without qoutes.\n");
scanf("%d %d %d %d", &xmin, &xmax, &yinin, &ymax);
xrange = xxnax - xmin;
yrange = ymax - ymin;
if (xrange > yrange)

xperc = 1;
yperc = yrange / xrange;

82

else

yperc = 1;
xperc = xrange / yrarlge;

vsurf = vsurf2;
init-ialize core(DYNAMICB, NOINPUT, 1WOD);
initialize-view-surface(&vsurf, FALSE);
select -view-surface(&vsurf);
set-ndc_space_2(1.0, 1.0);
set-viewport_2(minview(xperc), maxview(xperc),

minview(yperc), maxview(yperc));
set-window((float)xmin, (float)xmax, (float)ymin,

(float)ymax);
set output cl ipping (TRUE);
set -w.indow clipping(FALSE);
create -retained segment(count2);
move -abs_2((float)xmin, (float)ymin);
line -rel_2(xrange, 0.0);
line -rel_2(0.0, yrange);
line -rel_2(-l.0*(xrange), 0);
line -rel_2(0.0, -l.0*(yrange));
close-retained-segment()
count2++;
initialize device(BUTTON, 3);
initialize device(LOCATOR, 1);
set echo surface(LOCATOR, 1, &vsurf);
set echo surface(BUTTON, 3, &vsurf);
set echo(LOCATOR, 1, 1);

set -charprecision (CHARACTER);
set-text_index(l);

while(fgets(bufff,max buf,fd) != NULL)

count = 1;
count2+±;
while(buff[countl !=')')

tempbuf[count-l] = buff[count];
count++;

ternpbuf~count-l]=' '

tempbuf[count]=l0;
ternpbuf [count+l]=0;

sscanf(tempbuf, "%s", gatetype);

83

if (!(strcmp(qatetype, "Intrans"l)))

sscanf(tempbuf, "1%s %s %s %s %s %d %d", gatetype,
junk, gatel, gate2, gate3, &xpos, &ypos);

set image -transformation type (NONE);
create -retained -segmei t(count2);
ntrans((float) xpos, (float) ypos, gatel, gate2,

gate3);
close-retained-segmento;

else if (!(strcmp(gatetype, "ptrans"l)))

sscanf(tempbuf, "1%s %s %s %s %s %d %d", gatetype,
junk, gatel, gate2, gate3, &i:pos, &ypos);

set image -transformation type(NONE);
create retained -segment(.ount2);
ptr"-n6((float) xpos, (float) ypos, gatel, gate2,

gate3);
close-retained-segment();

else if (!(strcmp(gatetype, "inv")))

sscanf(tempbuf, "1%s %s %s %d %d"I, gatetype,
gatel, gate2, &xpos, &ypos);

set image -transformation type (NONE);
create-retained segment(count2);
inv((float) xpos, (float) ypos, gatel, gate2);
close-retained segment 0;

else if (! (strcmp(gatetype, "Itgate"l)))

sscanf(tempbuf, "%s %s %s %s %s %s %d %d",
gatetype, junk, gatel, gate2, gate3,
gate4, &xpos, &ypos);

set image -transformation type (NONE);
create retained -segment(count2);
tgate((float) xpos, (float) ypos, gatel, gate2,

gate3, gate4);
close-retained-segment()

else if (!(strcmp(gatetype, "nand2"')))

sscanf(tempbuf, "1%s %s %s %s %s %d %d", gatetype,
junk, gatel, gate2, gate3, &xpos, &ypos);

set image -transformation type (NONE);
create-retained segment(count2);

84

nand2((float) xpos, (float) ypos, gatel, qate2,
gate3);

close-retained seqmento;

else if (!(strcmp(gatetype, "nor2"')))

sscanf (tempbuf, "1%s %s %s %s %s %d %d"I, gatetype,
junk, gatel, gate2, gate3, &xpos, &ypos);

set image -transformation type (NONE);
create Iretained -segment(count2);
nor2((float) xpos, (float) ypos, gatel, gate2,

gate3);
close-retained-segment();

else if (!(strcmp(gatetype, "clk_mJv"I)))

sscanf (tempbuf, 11%s %s %s %s %s %d %d", gatetype,
gatel, gate2, gate3, gate4, &xpos, &ypos);

set image transformation type(INONE);,TT
create-retained segm~ent(count2);
cik-inv((float) xpos, (float) ypos, gatel, gate2,

gate3, gate4);
close-retained-segment()

else if (!(strcmp(gatetype, "buffer"1)))

sscanf(tempbuf, 11%s %s %s %d %d", qatetype,
gatel, gate2, &xpos, &ypos);

set -image -transformation type(NONE);
create_retained -segment(count2);
buffer((float) xpos, (float) ypos, gatel, gate2);
close-retained-segmento;

else if (1 (strcmp(gatetype, "'mux")))

sscanf(tempbuf, 1"%s %s %s %s %s %s %s %dI %d",
gatetype, junk, gatel, gate2, gate3,
gate4, gate5, &xpos, &ypos);

set -image -transformation type(NONE);
create_retained -segment(count2);
mnux((float) xpos, (float) ypos, gatel, gate2,

gate3, gate4, gate5);
close-retained-segment()

else if (!(strcmp(gatetype, "xnor"I)))

85

sscanf(tempbuf, 11%s %s %s %s %s %s %s %d %d,
gatetype, junk, gatel, gate2, gate3,
gate4, gate5, &xpos, &ypos);

set image -transformation type (NONE);
create retained -segment(count2);
xnor((float) xpos, (float) vpos, gatel, gate2,

gate3, gate4, gate5);
close-retained-segment();

else if (!(strcmp(gatetype, "lxor"l)))

sscanf(tempbuf, 11%s %s %s %s %s %s % s %d %d"I,
gatetype, junk, gatel, gate2, gate3,
gate4, gate5, &xpos, &ypos);

set image -transformation type (NONE);
create retained segment(count2);
xor((float) xpos, (float) ypos, gatel, gate2,

gate3, gate4, gate5);
close-retained-segment()

else if (! (strcmp(gatf=type, "ldff")))

sscanf(tempbuf, 11%s %s %s %s % s %d %d"I, gatetype,
gatel, gate2, gate3, gate4, &xpos, &ypo)

set image -transformation type (NONE);
create retained -segment(count2),
dff((float) xpos, (float) ypos, 4jatel, gate2,

gate3, qate4);
close-retained-segment()

fclose(fd);

butt = 0;
while (butt ==0) await any button(l,&butt);

ternminate device(BUTTON,3);
ter-ninate device(LOCATOR,l);
deselect -view -surface(&vsurf);
terminate core 0;

printf("\n\nWould you like to do another file or");
printf("I view, y or n? "1);
scanf("1%ls", another);

86

BUFFER.C, function to display buffer.

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: buffer.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a buffer.
* Passed Variables: Component type, node names,
* x and y coordinates.
* Calling Modules: Drawit.c
******************** *** *** * *** * *** ** ** * *** * ** ** ** ** ** ** ** ** **

#include <usercore.h>
#include <string.h>

static float bufferx[] = (1000.0, 400.0, -400.0, -1000.0,
0.0, -400.0, 400.0, 0.0);

static float buffery[] = (500.0, 0.0, 0.0, 500.0, -500,
0.0, 0.0, -500.0);

buffer(xO, y0, gatel, gate2)
float x0, yO;
char *gatel, *gate2;

move abs_2(xO+2000.0, yO+500.0);
polyline_rel_2(bufferx, buffery, 8);
set charspace(50.0);
set-char ize(160.0, 160.0);
move_.- 2(-210.0*(strlen(gatel)+0.5), 670.0);
text(gatel) ;
move abs_2(xO+3100.0, yO+1170.0);
text(gate2)

87

CLK INV.C, function to display a clocked inverter.

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: clk inv.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a clocked

* inverter.
* Passed Variables: Component type, node names,

* x and y coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>
-tatic float cinvx[] = (500.0, 29.*3, 70.7, 70.*7,29.3, 200.0,

-200.0, -29.3, -70.7, -70.7, -29.3,
-500.0, 0.0, -200.0, 200.0, 0.0);

static float cinvy[] = (250.0, 70.7, 29.3, -29.3, -70.7, 0.0,
0.0, -70.7, -29.3, 29.3, 70.7, 250.0,
-250, 0.0, 0.0, -250.0);

static float cinvx2[] = (0.0, 17.7, 7.3, -7.3, -17.7, 0.*0,
0.0, -17.7, -7.3, 7.3, 17.7);

static float cinvy2[] = (-375.0, -7.3, -17.7, -17.7, -7.3,
-75.0, 75.0, 7.3, 17.7, 17.7, 7.3};

clk -inv(xO, yO, gatel, gate2, gate3, gate4)
float xO, yO;
char *gatel, *gate2, *gate3, *gate4;

move-abs_2(xO+l000.C, yO+250 .O);
polylinerel_2(cinvx, cinvy, 16);
move-abs_2(xO+1250.0, yO+750.0);
polyli4ne-rel_2(cinvx2, cinvy2, 11);
set charspace(25. 0);
set charsize(80.0, 80.0);
move-abs_2(x04-1250.0+(-52.5*(strlen(gatel))) (yO+i5O.0);
text (gatel);
move-abs_2(xO+1250.0+(-52.5*(strlen(qate2))), (yO+350.0));
text(gate.2);
move-abs_2(xO+l000.0-s(-105.0*(strlen(gate3)+0.5)),

(yO+585. 0))
text(gate3);
move -abs_-2(xO+1750.0, yO+585.0);
text (gate4);

88

D.FF.C, function to display a D type Flip Flop.

*Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: dff.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: Displays a D type flip-flop.
* Passed Variables: Gatetype, node names, coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>
static float dffx[] = (500.0, 0.*0, 0.0, 500.0, 0.0, 400.0,

-400.0, 0.0, -500.0, 0.0, 0.0, -500.0, 0.0, -400.0, 400.0,
0.01;

static float dffy[] = (0.0, -50.0, 50.0, 0.0, 500.0, 0.0, 0.*0,
500.0, 0.0, 100.0, -100 0, 0.0, -500, 0.0, 0.0, -500.0);

dff(xO, y0, gatel, qate2, gate3, gate4)
float xC, yO;
char *gatel, *gate2, *gate3, *gate4;

move_abs_2(xO+2000.0, yO+500.0);
polyline_rpl_2(dffx, dffy, 16);
set charspace(50.0);
set charsize(160.0, 160.0);
move_abs_2(xO±2500.0+(-105.0*(strlen(gatel))),yO+1700.0);
text(gatel);
move_abs_2(xO+2500.0+(-105.0*(strlen(gate2))), yO+280.0);
text(gate2);
move_abs_2(xO+2000.0±(-210.0*(strien(gate3)+0.5)),yO+1170.0);
text(gate3);
move_abs_2(xO+3100.0, yO±1170.0);
text (gate4);
move_abs_2(xO;2180.0, yO+lOOO.O);
set charspace(1.0);
text("DFFI)7
set_charspace(30.0);
set -charsize(120.0, 120.0);
move_abs_2(xO±2010.0, yO+l000.O);
text("'DI);
move_abs_2(xO+2790.0, yO-4-lOO.O);
text(IQI);
move_abs_2(xO±2300.0, yO+1350.0);
text("Pl");
move_abs_2(x0+2290.0, yO+63O.O);
text('1 P2");

IdRIGNT-PATTERSON AFD 0ON SCHOOL OF ENGVMVR AG C U I OIST

ARSSIFIEID DEC 89 RFIT/GCE/ENGS9D-9 F/8 9/1 N

MEm~hEI

t 0 ill"'

II ________ IIIj

I I 40

I.~5 14''
I'll ________________

INV.C, function to display an inverter.

* Date: 8 Novembcr 1989
* Title: Graphical Display Routine
* Filename: inv.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays an inverter.
* Passed Variables: Component type, node names,
* x and y coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>

static float invx[] = J500-0, 29.3, 70.7, 70.7, 29.3, 250.0,
-250.0, -29.3, -70.7, -70.7, -29.3,
-500.0, 0.0, -250.0, 250.0, 0.0,);

static float invy[] = (250.0, 70.7, 29.3, -29.3, -70.7, 0.0,
0.0, -70.7, -29.3, 29.3, 70.7, 250.0,
-250.0, 0.0, 0.0, -250.0);

inv(xO, yO, gatel, gate2)
float x0, yo;
char *gatel, *gate2;

move abs_2(xO+1000.0, yO+250.0);
polyline_rel_2(invx, invy, 16);
set charspace(25.0);
set charsize(80.0, 80.0);
moverel_2(-105.0*(strlen(gatel)+0.5), 335.0);
text(gatel);
moveabs_2(xO+1750.0, yO+585.0);
text(gate2);

90

MUX.C, function to display a mnultiplexor.

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: mux.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a multiplexor.
* Passed Variables: Component type, node names,

* x and y coordinates.
* Calling Modules: Drawit.c

include <usercore.h
#include <string.h>
static float muxx[] = (500.0, 0.0, 0.0, 500.0, 0.0, 400.0,

-400.0, 0.0, -500.0, 0.0, 0.0, -500.0,
0.0, -400.0, 400.0, 0.0, -400.0, 400.0,
0.0);

-tat-'(float rnuxy[] = (0.0, -50.0, 50.0, 0.*0, 500.0, 0.0,
0.0, 500.0, 0.*0, 100.0, -100.0, 0.0,
-300, 0.0, 0.0, -400.0, 0.0, 0.0,
-300.0);

mux(xO, yo, gatel, gate2, gate3, gate4, gate5)
float xO, yo;
char *gatel, *gate2, *gate3, *gate4, *gate5;

move-abs_2(xO+2000.0, yO+500.0);
polylinerel_2(muxx, muxy, 19);
set charspace(50.0);
set charsize(160.0, 160.0),
move-abs_2(xO+2500.0+(-105.0*(strlen(gatel))), yO+1700.0);
text (gatel1);
move-abs_2(xO+2500.0+(-105.0*(strlen(gate2))), yO+280.0);
text(gate2);
move-abs_2(xO+2000.0+(-210.0*(strlen(gate3)+0.5)),

yO+1370.0);
text (gate3);
move-abs_2(xO+2000.0+(-210.0*(strlen(gate4)+0.5)),

yO+970.0);
text(gate4);
rove -abs_2(x0 3100.0, yO+1170.0);
text(gate5);
move -abs_2(xO+2180.0, yO+l000.0);
set -charspace(l.0);
text("I4UXI);

91

NAND2.c, function to display a NAND gate.

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: nand2.c

4 * Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displayj a NAND gate.
* Passed Variables: Component type, node names,

* x and y coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>

static float nandx[1 = (500.0, 95.65, 81.1, 54.2, 19.05, 29.3,
70.7, 70.7, 29.3, 200, -200, -29.3,
-70.7, -70.7, -29.3, -19.05, -54.2,
-81.1, -95.65, -500.0, 0.0, -200.0,
200.0, 0.0, -200.0, 200.0, 0.0);

static float nandy[] = (0.0, -19.05, -54.2, -81.1, -95.65,
70.7, 29.3, -29.3, -70.7, 0.0, 0.0,
-70.7, -29.3, 29.3, 70.7, -95.65,
-81.1, -54.2, -19.05, 0.0, 100.0, 0.0,
0.0, 300.0, 0.0, 0.0, 100.0);

nand2(xO, yO, yatel, gate2, gate3)
float x0, yo;
char *gatel, *gate2, *gate3;

move-abs_2(xO, yo);
move_rel_2(l000.0. 750.0);
polylinerel_2(nandx, nandy, 27);
set -charspace(25.0);
set-charsize(80.0, 80.0);
move_rel_2(-105.0*(strlen(gatel)+0.5), -30.0);
text(gatel);
move-abs_2((-105.0*(strlen(gate2)+0.5)+xO+l000) ,42O.0+yO);
text (gate2) !
move-abs_2(xO+1980.0, yO+580.0);
text(gate3);

92

NOR2.C, function to display a NOR gate./*** ********* *****

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: nor2.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function disr'-zys a .OR qd-i
* Passed Variables: Component type, node names,
* x and y coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>
static float norx[] = (98.0, 97.1, 95.2, 92.4, 88.7, 84.2,

78.8, 72.7, 29.3, 70.7, 70.. " ,
200, -200, -29.3, -70.7, -71'.'7, - .
-72.7, -78.8, -84.2, -88.7, -9-
-95.2, -97.1, -98.0?,

static float nory[] = (-4.8, -14.4, -23.8, --33.1,
-50.5, -58.5, -65.9, 70.7, :9.
-70.7, 0.0, 0.0, -70.7, -2'9 :-.3,
70.7, -65.9, -58.5, - . , -4 ,
-33.1, -23.8, -14.4,-4 8F ;

static float norx2[] = (25.3. 18.2, -300.0, -
-3.7, -11.0, -300.0,
-25.3);

static float nory2[] = (-70.7, -72.8, 0.0, 0. -. 3, -75.0,
-75.0, -74.3, 0.0, 0.o, -, .8,-70. 7 !

nor2(xO, yo, gatel, gate2, gate3)
float xO, yO;
char *gatel, *gate2, *gate3;

move a'--z_(xO+1000, yO+750);
polylinerel_2(norx, nory, 26);
move abs 2(xo+1000, yO+750);
polylinerel_2(norx2, nory2, 12);
set_charspace(25.0);
set charsize(80.0, 80.0);
move abs 2((-105.O*(strlen(gatel)+0.5)+xO+1040),((,-, ? ;
text(gatel) ;
moveabs 2((-105.0*(strlen(gate2)+0.5)+x+1040) , 3cU.ov0):
text(gate2) ;
move abs 2(xC+1940.0, yO+560.0);
tet (gate3) ;

93

NY+AS.C,1u!-,tion to display a N type transistor.

L* ft e 3 0ov~ember 1989
* Graphical Display Routine

* F 1r~me:ntrans.c

* ih -.: Capt Stuart Yarost
* .I)- Vvtr~iction System and Graphical Display

* Oncr.tu Ystem: Unix V4.3

La nqI ge: C
1 0ocr-rpt=o: This function displays a N-type
* transistor.

* Passed Van iLes: Component type, node na,ries,
* x and y coordinates.

*Calling MNejA:.!es: Drawit.c

i0C1 1 <u 3ercore.h>

st trig.h >

tiLloat ntrany[] =(80.0, 0.0, 80.0, 0.0, 80.0);
-3tatiu iloat ntranx2[] =(0.0, -60.0, 60.0 ,0.0);

-- tc cIat ntrany2[] f40.0, 0.0, 0.0, 40.0);

21 IEMyo, aatel -.LCt2, A gtn3C
0ia x, y 0

aa~abs_2 (xtC 720 0, yOi-70. 0)
pol, line rel- 'I, j.ranx, ntrany, 5);
move _abs_2(xo- n, yo+l50.0o);
pal :I'iiie rel e -I 'n-dnX2-, ntrany2, 4);
se+- charspace(:;'j,
,;et -harsize F,2C.0
m~ovr, abs_2 (xO+1 0* (strien(gat, rl) -0. 5), yO+"l 0)

move abs_2(xO+2' -.)5*(strl en(gate2)) , yO+33'1j
tex->t (gate2);
mov-,,,e -a ',- 2 (xO0+ 20 0 - 11 5 * (st rle n (ga te3) y 0, O40)
text (jate3)

PTRANS.C, function to display a P type transistor.

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: ptrans.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a p-type

* transistor.
* Passed Variables: Component type, node names,

* x and y coordinates.
* Calling Modules: Drawit.c

include <usercore.h
#include <strinq.h>

static float ptranx[] = (0.0, -40.0, 0.0, 40.0, 0.0);
static float ptrany[] = (80.0, 0.0, 80.0, 0.0, 80.01;
static float ptranx2[] (0.0, -2.9: -7.1, -7.1, -2.9, -60.0,

60.0 , 2.9, 7.1, 7.1, 2.9, 0.04;
static float ptrany2[] =(40.0, -7.1, -2.9, 2.9, 7.1, 0.0,

0.0, 7.1, 2.9, -2.9, -7.1, 40.0);

ptrans(xO, yO, gatel, gate2, gate3)
float xO, yO;
char *gatel, *gate2, *gate3;

move-abs_2(xO+200.0, yO+70.0);
polylinerel_2(ptranx, ptrany, 5);
move-abs_2(xO+150.0, yO+150.0);
polylinerel_2(ptranx2, ptrany2: 12);
set charspace(5.0);
set charsize(20.0, 20.0);
move -abs_2(xO±130-25.0*(strlen(gatel)+0.5), yO+210);
text (gatel) ;
move -abs_-2(xO+200-12.5*(strlen(gate2)) , yO+130);
text(gate2);
move -abs_-2(xO+200-12.5*(strlen(gate3)) , yO+40);
text (gate3);

TGATE.C, function to display a tgate.

* Date: 8 Ntvember 1989
* Title: Graphical Display Routine
* Filename: tgate.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a tgate.
* Passed Variables: Component type, node names,

* x and y coordinates.
* Calling Modules: Drawit.c

4inclucle <usercore.h>
#include <string.h>

static float tgatex[] = 250.0, 0.0, 200.0, -200.0, 0.0,
-500.0, 0.0, -200.0, 200.0, 0.0,
250.0, 0.0, 0.0,1-17.7, -7.3, 7.3,
17.7, 0.0, 0.0, 17.7, 7.3, -7.3,
-17 .7)4;

static float tgatey[] (-250.0, 250.0, 0.0, 0.0, 250.0,
-500.0, 250.0, 0.0, 0.0, 250.0,
-250.0, -250.0, 250.0, 7.3, 17.7,
17.7, 7.3, 225.0, -225.0, -7.3,
-17.7, -17.7, -7.3);

tgate(xO, yO, gatel, gate2, gate3, gate4)
float xO, yO;
chaL *gatel, *gate2, *gate3, *gate4;

move -abs -2(xO+1250.0, yO+500.0);
polyline-rel_2(tgatex, tgatey, 23);
set_charspace(25.0);
set -charsize(80.0, 80.0);
move -abs_-2(xO+1250.0+(-52.5*(strlen(gatel))), yO+840.0);
text(gate-L);
move abs 2(xO+1250.0+(-52.5*(strlen(gate2))), yO+140.0);
text (gate2);
move abs -2(xO+l000.0+(-l05.0*(strlen(gate3)+0.5)) ,yO+585.0);
text (gate3);
move -abs -2(xO+1540.0, y0+585.0);
text(gate4);

96

XNOR.C, function to display a exclusive NOR gate./*********************** ***********************************

* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: xnor.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a X-NOR gate.
* Passed Variables: gatetype, node names, coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>
static float xnorx[] = (196.0, 194.2, 190.4, 184.8, 177.4,

168.4, 157.6, 145.4, 58.6, 141.4, 141.4, 58.6, 400, -400,
-58.6, -141.4, -141.4, -58.6, -145.4, -157.6, -168.4,
-177.4, -184.8, -190.4, -194.2,-196.0);

static float xnory[] = (-9.6, -28.8, -47.6, -66.2, -84.0,
-101.0, -107.0, -131.8, 141.4, 58.6, -58.6, -141.4, 0.0,
0.0, -141.4, -58.6, 58.6, 141.4, -131.8, -107.0, -101.0,
-84.0, -66.2, -47.6, -28.8, -9.6);

static float xnorx2[] = {50.6, 36.4, -600.0, 600.0, 22.0, 7.4,
-7.4, -22.0, -600.0, 600.0, -36.4, -50.6);

static float xnory2[] = (-141.4, -145.6, 0.0, 0.0, -148.6,
-150.0, -150.0, -148.6, 0.0, 0.0,-145.6, -141.4);

static float xnorx3[] = {50.6, 36.4, 22.0, 7.4, -7.4, -22.0,
-36.4, -50.6);

static float xnory3[] = (-141.4, -145.6, -148.6, -150.0,
-150.0, -148.6, -145.6, -141.4);

xnor(xO, yO, gatel, gate2, gate3, gate4, gate5)
float xO, yO;
char *gatel, *gate2, *gate3, *gate4, *gate5;

move abs 2(xO+2160, yO+1500);
polyline rel_2(xnorx, xnory, 26);
move abs 2(xO+2160, yO+1500);
polyline rel_2(xnorx3, xnory3, 8);
move abs 2(xO+2000, yO+1500);
polyline rel_2(xnorx2, xnory2, 12);
set_charspace(50.0);
set charsize(160.0, 160.0);
move abs 2((-210.0*(strlen(gatel)+0.b)+xO+2080), 1330.0+yO);
text(gatel);
moveabs 2((-210.0*(strlen(gate3)+0.5)+xO+2080),780.0+yO);
text(gate3);
move abs 2(xO+4040.0, yO+l120.0);
text (gate5) ;

97

XOR.C, function to display a exclusive OR qgate.

* Date: 8 November 1989
* Title: Graphical Display Routine
* ilename: xor.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Gra.-hical Displ::v-
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a X-OR gate.
* Passed Variables: Component type, node names,

* x and y coordinates.
* Calling Modules: Drawit.c

#include <usercore.h>
#include <string.h>
static float xorx[1 (196.0, 194.2, 190.4, 184.8, 177.4,

168.4, 157.6, 145.4, 400, -400, -145.4, -157.6, -168.4,
-177.4, -184.8,-190.4, -194.2, -196.0);

static float xory[] = (-9.6, -28.8, -47.6, -66.2, -84.0,
-101.0, -107.0, -131.8, 0.0, 0.0, -131.8, -107.0, -101.0,
-84.0, -66.2,-47.6, -28.8, -9.6);

static float xorx2(] = (50.6, 36.4, -600.0, 600.0, 22.0, 7.4,
-7.4, -22.0, -600.0, 600.0, -36.4, -50.6);

static float xory2[] = (-141.4, -145.6, 0.0, 0.*0, -148.6,
-150.0, -150.0, -148.6, 0.0, 0.0,
-145.6, -141.4);

static float xorx3[] = (50.6, 36.4, 22.0, 7.4, -7.4, -22.0,
-36.4, -50.6);

static float xory3[] = (-141.4, -145.6, -148.6, -150.0,
-150.0, -148.6, -145.6, -141.4);

xor(xO, yO, gatel, gate2, gate3, gate4, gates)
float xO, yO;
char *gatel, *gate2, *gate3, *gate4, *gates;

move-abs 2(xO+2160, yO+1500);
polyline_rel_2(xorx, xory, 18);
move -abs 2(xO+2160, yO+1500);
polyline rel -2(xorx3, xory3, 8);
move -abs 2(xO+2000, yO+l500);
polyline rel -2(xorx2, xory2, 12);
set_charspace(50.0);
set charsize(160.0, 160.0);
move_abs_ 2((-210. 0* (strlen(gatel) +0. 5) +xO+2080) , 1330.0±yO);
text (gatel);
move -abs -2((-210.0*(strlen(gate3)+0.5)+xO+2080),780.0+yO);
text(gate3);
move abs -2(xO+3700.0, yO±1120.0);
text(gate5);

98

Appendix B: Graphical Display code

DRAWVTEST, batch program to run "testgate.c".

t!/bin/csh -f
shelitool -Wp 0 0 -Ws 900 900 "teotgate"

TFESTGATE, program to test functions of "drawit.c".

* Date: 8 November 1989
* Title: Graphical Display Tester
* Filename: testgate.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display

Operating System: Unix V4.3
La-nguage: C

* >--Sc r ipt ion:
* Th-Ls routine tests functions by drawing

* corcnentson the screen.

* Passed < ~ Component type, node nares
* Returns: Nonco
* Files Read: non-
* Hardware Input: Picbt muse button.
* Modules Called: buffer.c 11k inv.c dff.c- i'nv.c rnux.c

* nan-d2.1-~rr ntrmair.c ptrans.c
* ~tgate.c: xv.'r.c - c

* Files Written: none
* Special Instructions :Must be run -e

* environment.

*Run batch fur "Irr .< . t to
* start the proqram,.

#include <stdio.h>
#include <string.h>
#include <usercore.h>

#define minview(n) (0.5 - ((n)/2))
#define maxview(n) (0.5 + (n/)

char gatetype[20], anotherjl2];

99

int butt, xmax, xmin, ymax, ymin;
int pixwindd();
float xrange, yrange, xperc, yperc;
struct vwsurf vsurf =DEFAULT_VWSURF(pixwt-ndd);

stt-uct vwsurf vsurf2 DEFAULT-VWSURF(pixwfLndd);

ma in)

another[Ol =IV

while (anothler[0O = 'y')

printf("What type component do you wish to test?\n");
scanf("'%s", gatetype);

xmin = 0;
xrnax -10000;
ymin -0;
yma>: -10000;

printf(tlrhe coordinate limits are as foIlo-:\,nI);
printf("xmin = %d\n",xmin);
printf("xmax = %d\r ,xmax+5000);
printf("ymin = %cl\nI",ymin);
printf("ymax =%d\n\n"I,ymax±5000);

printf("What part of the screen 1);
printf("do you wish to display?\n");
printf ("Please enter \"1xmin xmax ymin vm-x1\1"")
printf(" without qoutes.\n");
scanf("%d %d %Od %d", &xmrin, &xmax, &y- l Sy:r>,:)
xrange =xmax - xmin;
yrange ymax - ymin;

if (xranqe yrange)

xperc- 1;

-1 I- 1 t-)

minview(yperc), maxview(yperc));

100

set winaow((float)xmin, (float)xmax,
(float)ymin, (float)ymax);

set output clipping(TRUE);
set -window clipping(FALSE);
create -retained segment(l)-
move -abs_2((float)xmin, (float)ymin);
line -rel_2(xrange, 0.0);
line rel_2(0.0, yrange)7
ine rel_2(-i.0*(xrange), 0);
ce-,-,rel_2(0.0, -1.O*(yrange));
,ccc retained__segment()
itUtiilize device(BUTTON, 3);
i-Ltialize device(LOCATOR, 1),

e,- -cho_ surface(LOCATOR, 1, &vsurf);
s -- cho. surface(BUTTON, 3, &vsurf);
sLE eclio (LOCATOR, 1, 1)
set ~r precision(CHARACTER);

--. rrcnp(gatetype, "Intrans"l)))

.-image transformation_type(NON E);
.Yeate-retained_segment(2);

!cc-.-,retained segmentO;

Ise it (!(strcr.mp(qatetype, "ptrans")))

set i-mage_transformiation type(NONE);

c-eate -retained_segmcnt(2);

closeretained scgment();

elcsc it> (s trcmp(gatetype, "inv")))

iot t,? tr-insformationtype(NONE)
- , "uinrA s-efment(2)

!crm t n tpc& (NONE)

else if (!(strcmp rLV

101

set-image transformation_type(NONE);
create -retained_segment(2);
nand2(0.0, 0.0, "gatel", "gate2"', "gate31);
close-retained segment 0;

else if (! (strcmp(gatetype, "nor2"')))

set-image transformation_type(NONE);
create Tretained_segment(2);
nor2(0.0, 0.0, "gatel", "gate2", "lgate3l);
close-retained segment()

else if (!(strcmnp(gatetype, "lclk_mnv")))

set-image transformation_type(NQNF);
create-retained_segment(2);
clk-inv(0.0, 0.0, "gatel", "gate2",'c,-ite3"',"gate4"')

close-retained segment()

else if (! (strcmp(gatetype, "buffer")))

set-imnage_transformati-on type(NONE);
create -retained_segnent(2);
buffer(0.0, 0.0, "gatel", "gate2');
close-retained segment()

else if (I (strcmp(gatetype, "'mux")))

set-image transformation type(NONE);
create -retained_segment(2) ;
mux(0.0, 0.0,"gatel","gate2"',"gate3"i,"gate4",

"gate5');
close-retained segment()

else if (!(strcmp(gatetype, "xnor"I)))

set-image transformation_type(NONE);
create -retained_segjment(2);
xnor(0.0, 0.0, "gatel", "gate2", "gate3"', "gate4"',

"gate"t);
close-retained segment();

else if (! (strcmp(gatetype, "xor"I)))

set_ image transformation_type(NONE);
create -retained_segment(2);
xor(0 .0, 0.0, "gatel", "gate2"', "gate3", "gate4"',

"lgateS');

102

close-retained segmento;

else if (Qtrunp(gatetype, "dff")))

set-image transformation_type(NONE);
create -retained_segment(2);
df f(0. 0, 0. 0, "gatel", "gate2", "gate3", "gate4")

close-retained_segment()

else

printf("That is not a testable component!\n");
butt = 3;

while (butt ==0) await_any_button(1,&butt);
terminate device(BUTTON,3);
terminate device(LOCATOR, 1);
deselect -view-surface(&vsurf);
terminate_core()
printf("\n\nWould you like to test another");
printf("I gate, y or n? "1);

scanf("%ls", another);

103

CIRCLEPT.C, program to generate moves to draw a circle.

* Date: 8 November 1989
* Title: Circle Coordinate Generator
k File-name: ci4rclept.c
* Author: Capt Stuart Yarust
* Project: Extraction Syster, and Graphical Display
* Operating System: Unix V4 3, DOS V3.3
* Language: C
* Descript.on:
* PrcJluces a list of x moves and y moves
* nc,-essary to draw a circle of x points and
* y radius. a and y are input by the user.

#include <stdio.h>
4include <math.h>

#define pi 3.141592654
#define arc 2*pi/number

mnt number, radius, count;
double xmov, ymov, xpos, ypos, oldx, oldy;

main()

printf("How many points on the circle?\n");
scanf("%d", &number);
printf("What is the desired radius?\n");
scanf ("%d", &radius)
oldx = -1.0;
oldy = 0.0;
for(count =1; count <= number; count++)

xpos = cos(pi - (arc * count));
ypos = sin(pi - (arc * count));
xmov = (xpos - oldx)*radius;
vmov = (ypos - oldy)*radius;
oldx = xpos;
oldy = ypos;
printf("x move is :%8.1f y move is :"1, xmov);
printf(" %8.lf\n", ymov);

104

NEW. SIM
The following is the MEXTRA produced file of the clock

generator circuit.

units: 1 tech: cmos-pw format: UCB
p 128 OZpql Vdd 300 21596.3 -26700 -24000
p 128 OZpql Vdd 300 21596.3 -28500 -24000
p 128 OZ_pql Vdd 300 21596.3 -30300 -24000
p 128 OZpql Vdd 300 21596.3 -32100 -24000
p 128 OZpql Vdd 300 21596.3 -33900 -24000
p 128 OZpql Vdd 300 21596.3 -42900 -24000
p 128 OZpql Vdd 300 21596.3 -44700 -24000
p 128 OZ_pql Vdd 300 21596.3 -46500 -24000
p 128 OZ_pql Vdd 300 21596.3 -48300 -24000
p 128 OZpql Vdd 300 21596.3 -50100 -24000
p 53 OZpq2 Vdd 300 21596.3 76800 -29400
p 53 OZpq2 Vdd 300 21596.3 75000 -29400
p 53 OZ_pq2 Vdd 300 21596.3 73200 -29400
p 53 OZpq2 Vdd 300 21596.3 71400 -29400
p 53 OZ_pq2 Vdd 300 21596.3 69600 -29400
p 53 OZpq2 Vdd 300 21596.3 60600 -29400
p 53 OZ pq2 Vdd 300 21596.3 58800 -29400
p 53 OZpq2 Vdd 300 21596.3 57000 -29400
p 53 OZpq2 Vdd 300 21596.3 55200 -29400
p 53 OZ_pq2 Vdd 300 21596.3 53400 -29400
C IZ_capl 177 392 (900 -8100)
p 277 Vdd 233 300 13647.8 24450 -9900
p 329 277 Vdd 300 6748.75 18600 -11400
p 53 Vdd OZ-pq2 300 21596.3 53100 -17850
p 53 Vdd OZ-pq2 300 21596.3 54900 -17850
p 53 Vdd OZ-pq2 300 21596.3 56700 -17850
p 53 Vdd OZ-pq2 300 21596.3 58500 -17850
p 53 Vdd OZ-pq2 300 21596.3 60300 -17850
p 53 Vdd OZ-pq2 300 21596.3 69300 -17850
p 53 Vdd OZ-pq2 300 21596.3 71100 -17850
p 53 Vdd OZ-pq2 300 21596.3 72900 -17850
p 53 Vdd OZ-pq2 300 21596.3 74700 -17850
p 53 Vdd OZ-pq2 300 21596.3 76500 -17850
p 233 53 Vdd 300 21596.3 37200 -17100
p 233 53 Vdd 300 21596.3 39000 -17100
p 233 53 Vdd 300 21596.3 40800 -17100
p 233 53 Vdd 300 21596.3 42600 -17100
p 233 53 Vdd 300 21596.3 44400 -17100
p 277 Vdd 233 300 13647.8 24450 -12750
e 450 449 520 300 450 3300 -1350
e 498 520 GND 300 450 2700 -1350
e IZgo GND 498 300 450 1500 -1350
e 424 453 GND 300 450 27600 -1650
e 453 GND 329 1200 450 25500 -2250
e 447 329 GND 1200 450 23550 -2250

105

e 329 GND 447 1200 450 21600 -2250
e 450 424 GND 300 450 17100 -2700
e 449 443 GND 600 450 5100 -2700
e 424 447 GND 1200 450 19500 -2850
* 177 444 GND 1200 450 10650 -3150
* 444 450 GND 1200 450 15000 -3300
* 443 177 GND 1200 450 7350 -3300
e 277 GND 233 300 13497.8 24300 -4800
p 128 Vdd OZ_pql 300 21596.3 -30600 -12450
p 128 Vdd OZ_pql 300 21596.3 -32400 -12450
p 128 Vdd OZ_pql 300 21596.3 -34200 -12450
p 128 Vdd OZ_pql 300 21596.3 -43200 -12450
p 128 Vdd OZ_pql 300 21596.3 -45000 -12450
p 128 Vdd OZ_pql 300 21596.3 -46800 -12450
p 128 Vdd OZ_pql 300 21596.3 -48600 -12450
p 128 Vdd OZ_pql 300 21596.3 -50400 -12450
p 128 Vdd OZ_pql 300 21596.3 -28800 -12450
p 128 Vdd OZ_pql 300 21596.3 -27000 -12450
e 329 GND 277 300 3299.75 18600 -6450
e 584 GND 533 300 13497.8 -5550 9000
C IZ_cap2 444 763 (20400 5100)
p 447 584 Vdd 300 6748.75 6150 4200
p 584 Vdd 533 300 13647.8 -5550 4050
p 424 Vdd 453 300 900 27300 1650
p 450 Vdd 424 300 900 16950 1350
p 453 329 589 1200 900 24750 1200
p 447 589 Vdd 1200 900 23250 1200
p 329 Vdd 587 1200 900 21150 1200
e 233 GND 53 300 17996.8 41850 -5550
e 233 GND 53 300 17996.8 40050 -5550
e 233 GND 53 300 17996.8 38250 -5550
e 53 OZpq2 GND 300 17996.8 56400 -1350
e 53 OZpq2 GND 300 17996.8 58200 -1350
e 53 OZpq2 GND 300 17996.8 60000 -1350
e 53 OZpq2 GND 300 17996.8 69600 -1350
e 53 OZpq2 GND 300 17996.8 71400 -1350
e 53 OZpq2 GND 300 17996.8 73200 -1350
p 533 129 Vdd 300 21596.3 -17700 -750
p 533 128 Vdd 300 21596.3 -15900 -750
p 533 128 Vdd 300 21596.3 -14100 -750
p 533 128 Vdd 300 21596.3 -12300 -750
p 533 128 Vdd 300 21596.3 -10500 -750
p IZgo Vdd 498 300 900 1500 900
p 498 449 Vdd 300 900 2700 900
p 450 Vdd 449 300 900 3900 900
p 449 443 Vdd 600 900 5250 900
p 177 Vdd 444 1200 900 10500 1050
p 584 Vdd 533 300 13647.8 -5550 1200
p 443 Vdd 177 1500 900 7200 1200
p 444 Vdd 450 1200 900 14850 1200

106

p 424 587 447 1200 900 19650 1200
e 128 GND OZ_pql 300 17996.8 -29700 14400
e 128 CND OZpql 300 17996.8 -31500 14400
e 12R GND OZpql 300 17996.8 -33300 14400
e 128 GND OZ_pql 300 17996.8 -42900 14400
e 128 GND OZ_pql 300 17996.8 -44700 14400
e 128 GND OZpql 300 17996.8 -46500 14400
e 533 GND 128 300 17996.8 -11550 10800
e 533 GND 128 300 17996.8 -13350 10800
e 533 GND 128 300 17996.8 -15150 10800
e 128 OZ_pql GND 300 17996.8 -46500 4050
e 128 OZ_pql GND 300 17996.8 -44700 4050
e 128 OZpql GND 300 17996.8 -42900 4050
e 128 OZpql GND 300 17996.8 -33300 4050
e 128 OZ_pql GND 300 17996.8 -31500 4050
e 128 OZpql GND 300 17996.8 -29700 4050
e 53 GND OZ-pq2 300 17996.8 56400 9000
e 53 GND OZ pq2 300 17996.8 58200 9000
e 53 GND OZ-pq2 300 17996.8 60000 9000
e 53 GND OZ-pq2 300 17996.8 69600 9000
e 53 GND OZ-pq2 300 17996.8 71400 9000
e 53 GND OZ-pq2 300 17996.8 73200 9000
e 447 GND 584 300 3299.75 6150 10050
C Vdd GND 17835
C IZgo GND 1758
C IZ_capl GND 1885
C OZpq2 GND 11677
C OZpql GND 11672
C 53 GND 2190
C 128 GND 2176
C 177 GND 271
C 233 GND 528
C 277 GND 142
C 329 GND 114
C 424 GND 84
C 443 GND 51
C 444 GND 245
C 447 GND 109
C 450 GND 59
C 533 GND 518
C 584 GND 152
C IZcap2 GND 2220

107

the. f Io I u, c o h e CI

"'• 1 '.wi d, 1 59th t ji ;.m -. '_ > <.i .' the clock

6:L vdd 300 215 9 --7O -0
..I , " dd 3 00 21D9" .. 2b / -2.1A 0,',

d 'Lv d 300 21596. } -03 0(-2 4,u,

. i O0 21596.3 -32100 -2-000)
I dd 2o0 21596 3 -- 33900 -214 ,

-00 21596 .3 -42900 -24100'
f I . 00 'i596 .3 -44700 -2400)

.21596 .3 -. 16500 -2400')
- U 21596.3 -48300 -24000,)

1- l , 3 231596 .3 -50100 -240',
p0 596. 3 76800 -29400)

-3 75000 -29400
3 2 29elJ " . .- 1 3 7, f00 -294 00)

C , -. ..",,671100 -29400)-- OE ? --" dd 0 1''' 69600 -29400)

V 60600 -29410)

d3 2 ''d 3 . 5q ,00 -? 400
(. 50 OZ__pq2 vdd 25< -6 3 57000 -29 00
(p uZ pq2 vdd 379 -2-,1 9 5 200 0
(p 53 OZpq2 vid 30' 2 , 3 53400 - 5)

vr"d 233 300 i3C 1'/ 2 44K0 -9900 '
p j29 2 -, "d 300 6748.7/ 17600 -1146(u
(p 53 vdd O pq2 3O r2' 1D.-6 3 5"3100 -1760
(p 53 vdd 0 ., > 2 3 1') 215 96 .-3 54900 -1 i73/ 8
(p 53 vdd Z p q2 3{00 21]596. 3 56700 - IV850
(p 53 VdA DZpq2 300 21596.3 58500 -- 17256)
(p 53 vdd *Opq2 300 21596.3 60300 -17850)
(p 53 vdd OZpq2 300 21596.3 69300 -17850)
(p 53 vdd OZ__pq2 300 21596.3 71100 -17850)
(p 53 vdd OZpq2 300 21596.3 72900 -17850)
(p 53 vdd OZpq2 300 21596.3 74700 -17850)
(p 53 vdd OZpq2 300 21596.3 76500 -17850)
(p 233 53 vdd 300 21596.3 37200 -17100)
(p 233 53 vdd 300 21596.3 39000 -17100)
(p 233 53 vdd 300 21596.3 40800 -17100)
(p 233 53 vdd 300 21596.3 42600 -17100)
(p 233 53 vdd 300 21596.3 44400 -17100)

(p 277 vdd 233 300 13647.8 24450 -12750)
(n 450 449 520 300 450 3300 -1350)
(n 498 520 gnd 300 450 2700 -1350)
(n IZgo gnd 498 300 450 1500 -1350)
(n 424 453 gnd 300 450 27600 -1650)
tn 453 gnd 329 1200 450 25500 -2250)
(n 447 329 gnd 1200 450 23550 -2250)
(n 329 gnd 447 1200 450 21600 -2250)
(n 450 424 gnd 300 450 17100 -2700)

108

(n 449 443 gnd 600 400 S100 -2700)
(n 424 447 gnd !200 450 19500 -2850)
(n 177 444 g nd 1200 450; 10650 -3150)
(n 444 450 gn d 1 20)0 450 12000 -3300)

(n 443 17 gnd 1200 45((-7 -3300)
(n 277 gnd 233 3(C)") .'8 2,4300 -4800)
(p 128 vdd OZ pq_ 3. j1%56.3 -30600 -12450)
(p 128 vdd 0C pIq. , I' .3 -32400 -12450)
p 128 vdd 0 { 1 ! 215_,C,.3 -34200 -1245'5)

Iv 12 v . p"I dj 215 C. 3 -43200 -12450)
,7 vI OZ p,- 3 00 21596. 3 -45000 -12450)

d 12 0 d l 0 21596.3 -46800 -12450)
In 2, vdd _')c u 2.596.3 -48600 -12450)

S-2 dd . 21596.3 -50400 -12450
S d (l ,] 1 21596.3 -28800 -124-0

- p-,'2,596.3 " -27000 -124K!
2 '9.7:28600 -6450)

• : qN : ". 3 2__: . " - 550 9000
: " 3 .- 5 ,5 0 4200)

:- -" .'].{ : :'(47 g "ThO5 4(0(D)

0 r7.u,2 1650)

V 3.'50)

" " " 13 , 1200)

p ,~) "1 12 2On

r I

1 ~~ 5-~O 51" :2 0,, -551))

A " ,' -rqf 1 !3 (9 .. 56020 -1
- 8/, 2 0 - > 8200 - 3

=. ~ i p q ,-, 9€ i 17 96. 9 0 -"

0' 7"q: od 1 i 9, 7140' --13:,
Cr - OZ vq gn, - i C, C00, ,

533 122 v8 21d; 3 -. 7'700 -7

2 ' J r .. . 1 - 0000 -7
: 5 ,3 12 c v.] 1,4' i5) - 10 , ..i>rl

(P 3'3 12 v "r4 d -12 10 - ,
(p 533 12-'21 " - .3 -15O 0 -,(,
(p IZ go vJ1 4 , ' 900)
(p 490 44 , J f 17'..K' 0)0)
(p 450 v " 0 3, 200 900)

o 4 , .0 0210 900)
,. .,, 00 1050)
" , >ii :: l' ,67.0. -5550 1203))

r) t. -- 7200 1200)
14950 1200

- ' 0 1,650 1.200)

- p , 'I6 8 -20700 1,4 'm))
127,;" I p'{ Yr 1"'r2_(."2 -31,00 1440,0

2')

(n 128 gnd OZpql 300 17996.8 -33300 14400)
(n 128 gnd OZpql 300 17996.8 .-42900 14400)
(n 128 gnd OZpql 300 17996.8 -44700 14400)
(n 128 gnd OZpql 300 17996.8 -46500 14400)
(n 533 gnd 128 300 17996.8 -11550 10800)
(n 533 gnd 128 300 17996.8 -13350 10800)
(n 533 gnd 128 300 17996.8 -15150 10800)
(n 128 OZpql gnd 300 17996.8 -46500 4050)
(n 128 OZpql gnd 300 17996.8 -44700 4050)
(n 128 OZpql gnd 300 17996.8 -42900 4050)
(n 128 OZpql gnd 300 17996.8 -33300 4050)
(n 128 OZpql gnd 300 17996.8 -31500 4050)
(n 128 OZ pql gnd 300 17996.8 -29700 4050)
(n 53 gnd OZpq2 300 17996.8 56400 9000)
(n 53 gnd OZpq2 300 17996.8 58200 9000)
(n 53 gnd OZpq2 300 17996.8 60000 9000)
(n 53 gnd OZpq2 300 17996.8 69600 9000)
(n 53 gnd OZpq2 300 17996.8 71400 9000)
(n 53 gnd OZ pq2 300 17996.8 73200 9000)
(n 447 gnd 584 300 3299.75 6150 10050)

110

Appendix D: User's Manual

Extraction Program

The extraction program can be run on any machine that can

run CLIPS. Machines with more memory and that are more

powerful are preferable.

Files needed are:

clips
sim2clip
"sim"

trl.clp
tr2 .clp
tr3.clp
findext.clp
trn.btt
findext.btt

The steps to perform the extraction are:

1. Rename the "sim" file to "new.sim". This "sim" file is

the output of the program MEXTRA.

2. Run the program sim2clip. A new file called good.clp

should now be in the directory. This file is the

processed "new.sim" file.

3. Run the extraction routines by typing "clips -f trn.btt".

This calls up CLIPS and runs the batch file trn.btt,

which contains the commands needed to run the various

rule files. The output of this process are four files;

outcompl.clp, compreml.clp, outcomp2.clp and

comprem2.clp. This files contain the first and second

levels of extraction.

111

4. Run the routines to find the extreme values, and to

produce the input file for the display routines, by

typing the command "clips -f findext.btt". This calls

up CLIPS and runs the batch file findext.btt. At the end

of this step there should be a file called "scaled.clp"

in the directory. Rename this file before further

extraction on any other circuits, or it will be

overwritten.

Display Program

The display program can be run on any Sun 3 or Sun 4

workstation, provided that the code has been correctly

compiled for it. The program must be run from inside the

Sunview environment. The environment is started by typing

"sunview".

Files needed are

drawgate
drawit
scaled.clp (or what it was renamed)

The steps to use the graphical display are as follows:

1. Enter Sunview by typing "sunview".

2. Start the graphical display by typing "drawgate". Wait

for the new window to open.

3. Place the mouse pointer in the window, then type in the

name of the file produced in the extraction process, then

press RTN. Unless it was renamed, the file is

112

"scaled.clp". Do not use quotes when entering the name,

or the program will not be able to find the file.

4. Enter the minimum and maximum x and y coordinates as

asked by the program.

5. To escape the display, push the right mouse button while

the mouse pointer is on the graphical display. The input

window will return and ask if another file or view is

wanted. Answer y or n. Any answer besides y will cause

the program to exit. If y is entered, return to step 3.

113

Bibliography

1. Fretheim, CPT Erik J. Reverse Engineering VLSI Using
Pattern Recognition Techniques. MS Thesis
AFIT/GE/ENG/88J-1. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH,
June 1988.

2. Dukes, CPT Michael A. A Multiple-Valued Logic System for
Circuit Extraction to VHDL 1076-1987. MS Thesis
AFIT!GE/ENG/88S-1. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH,
September 1988.

3. NASA, Lyndon B. Johnson Space Center, Artificial
Intelligence Section. CLIPS Reference Manual, Version 4.3
of CLIPS. June 1989.

4. Bratko, Ivan. PROLOG Programming for Artificial
Intelligence. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1987.

F. Kerni!hmn, Brian W. and Dennis M. Ritchie. TIe C
Procra;>o ng Lang uage (Second Edition) . Englewood Falls NJ:
Prenti(oe Hall, 1388.

-----. SunCore Reference Manial. Sun Microsystecs,
Mount [in View, CA, 1986.

114

Vita

Captain Stuart A. Yarost was born in Detroit, Michigan

on 17 February 1963. Following graduation from high school

in Southfield, Michigan in 1981, he attended Michigan State

University, where he graduated with honor with a Bachelor of

Science in Electrical Engineering. During his time at

Michigan State University, he entered the College Senior

Engineering Program (CSEP) of the USAF. This led to his

commission in the USAF after finishing Officer Training School

on 13 September 1985. His first assignment was to the

6520th Test Group at Edwards AFB, where his jobs included

microcomputer manager, training manager, program analyst, and

avionics flight test engineer at the F-16 Combined Test Force.

He was selected for full-time attendance to the Air Force

Institute of Technology in December of 1987. He is happily

married to his wife Debbie, and will remain at

Wright-Patterson AFB after graduation, to work for AFLC at

ALL).

Permanent address: 7080 Clements

West Bloomfield, Mi., 48322

115

I n. (-,nt ABSTRACT

This thesis proposes a system for higher-order logic extraction of
compor1em!s from a net-list of transistors and the graphical display of the
extracted components. Critical sections have been implemented to d,.,uu:Late
the feasibiLitv of the system. These sections include a prototype expert
system written in CLIPS and a graphical display capable of displaying extracted
components on a Sun workstation.

Extraction techniques which were developed in this effort use pattern
matching and multiple passes. Graphical techniques used in the display
include simple line drawing and translation of images.

This research has the potential to provide savings of time and effort to
engineers designing new circuits or reverse-engineering older circuits for
Wuich no adequate specifications exist. This systea will also help to close
the design cycle and allow the designer to assure that what he has physically
designed is what he has logically designed.

",C L A5 I " F! 1D
SECQRITY CLASS FCA ON O

"
S (AT

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

la REPORT SECjRITY CLASSi lCATiON lb RESTRICTIVE MARKINGS

LINCLA.\SIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSiFICATiON DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCE/ENG/8qD-9

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology(AU)
Wright-Patterson AFB, OHIO 45433-6583

Ba. NAME OF FUNDING/ SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

WRDC/ELED WRDC/ELED
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Wright Research and Developement Center PROGRAM PROJECT TASK WORK UNIT
Wright-Patterson AFB, OHIO 45433 ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification) (UNCLASSIFIED)

A CIRCUIT EXTRACTION SYSTEM AND GRAPHICAL DISPLAY FOR VLSI DESIGN

12 PERSONAL AUTHOR(S)

Stuart A. Yarost, Captain, USAF
13a. TYPE OF REPORT i13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis FROM TO 1989 December 122

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Circuit Extraction, Reverse Engineering, Integrated Circuits

09 01 Computer Aided Design, Artificial Intelligence,

12 09 Graphical Display
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Dr. Frank M. Brown, Professor of Electrical Engineering

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED Z] SAME AS RPT EJ DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TE' E,":;NE (Include Area (-^d.I 22c OFFICE SYMBOL

Dr. Frank M. Brown (513)255-9265 AFIT/ENG

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

N'b7

